File size: 19,869 Bytes
dc3939a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
# pylint: skip-file
# type: ignore
import math
import random
import torch
from torch import nn
from torch.nn import functional as F
from .fused_act import FusedLeakyReLU
from .stylegan2_arch import (
ConvLayer,
EqualConv2d,
EqualLinear,
ResBlock,
ScaledLeakyReLU,
StyleGAN2Generator,
)
class StyleGAN2GeneratorSFT(StyleGAN2Generator):
"""StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
Args:
out_size (int): The spatial size of outputs.
num_style_feat (int): Channel number of style features. Default: 512.
num_mlp (int): Layer number of MLP style layers. Default: 8.
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be
applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1).
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
narrow (float): The narrow ratio for channels. Default: 1.
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
"""
def __init__(
self,
out_size,
num_style_feat=512,
num_mlp=8,
channel_multiplier=2,
resample_kernel=(1, 3, 3, 1),
lr_mlp=0.01,
narrow=1,
sft_half=False,
):
super(StyleGAN2GeneratorSFT, self).__init__(
out_size,
num_style_feat=num_style_feat,
num_mlp=num_mlp,
channel_multiplier=channel_multiplier,
resample_kernel=resample_kernel,
lr_mlp=lr_mlp,
narrow=narrow,
)
self.sft_half = sft_half
def forward(
self,
styles,
conditions,
input_is_latent=False,
noise=None,
randomize_noise=True,
truncation=1,
truncation_latent=None,
inject_index=None,
return_latents=False,
):
"""Forward function for StyleGAN2GeneratorSFT.
Args:
styles (list[Tensor]): Sample codes of styles.
conditions (list[Tensor]): SFT conditions to generators.
input_is_latent (bool): Whether input is latent style. Default: False.
noise (Tensor | None): Input noise or None. Default: None.
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
truncation (float): The truncation ratio. Default: 1.
truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
inject_index (int | None): The injection index for mixing noise. Default: None.
return_latents (bool): Whether to return style latents. Default: False.
"""
# style codes -> latents with Style MLP layer
if not input_is_latent:
styles = [self.style_mlp(s) for s in styles]
# noises
if noise is None:
if randomize_noise:
noise = [None] * self.num_layers # for each style conv layer
else: # use the stored noise
noise = [
getattr(self.noises, f"noise{i}") for i in range(self.num_layers)
]
# style truncation
if truncation < 1:
style_truncation = []
for style in styles:
style_truncation.append(
truncation_latent + truncation * (style - truncation_latent)
)
styles = style_truncation
# get style latents with injection
if len(styles) == 1:
inject_index = self.num_latent
if styles[0].ndim < 3:
# repeat latent code for all the layers
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else: # used for encoder with different latent code for each layer
latent = styles[0]
elif len(styles) == 2: # mixing noises
if inject_index is None:
inject_index = random.randint(1, self.num_latent - 1)
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
latent2 = (
styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
)
latent = torch.cat([latent1, latent2], 1)
# main generation
out = self.constant_input(latent.shape[0])
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
skip = self.to_rgb1(out, latent[:, 1])
i = 1
for conv1, conv2, noise1, noise2, to_rgb in zip(
self.style_convs[::2],
self.style_convs[1::2],
noise[1::2],
noise[2::2],
self.to_rgbs,
):
out = conv1(out, latent[:, i], noise=noise1)
# the conditions may have fewer levels
if i < len(conditions):
# SFT part to combine the conditions
if self.sft_half: # only apply SFT to half of the channels
out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
out_sft = out_sft * conditions[i - 1] + conditions[i]
out = torch.cat([out_same, out_sft], dim=1)
else: # apply SFT to all the channels
out = out * conditions[i - 1] + conditions[i]
out = conv2(out, latent[:, i + 1], noise=noise2)
skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
i += 2
image = skip
if return_latents:
return image, latent
else:
return image, None
class ConvUpLayer(nn.Module):
"""Convolutional upsampling layer. It uses bilinear upsampler + Conv.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
stride (int): Stride of the convolution. Default: 1
padding (int): Zero-padding added to both sides of the input. Default: 0.
bias (bool): If ``True``, adds a learnable bias to the output. Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
activate (bool): Whether use activateion. Default: True.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
bias=True,
bias_init_val=0,
activate=True,
):
super(ConvUpLayer, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
# self.scale is used to scale the convolution weights, which is related to the common initializations.
self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
self.weight = nn.Parameter(
torch.randn(out_channels, in_channels, kernel_size, kernel_size)
)
if bias and not activate:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
else:
self.register_parameter("bias", None)
# activation
if activate:
if bias:
self.activation = FusedLeakyReLU(out_channels)
else:
self.activation = ScaledLeakyReLU(0.2)
else:
self.activation = None
def forward(self, x):
# bilinear upsample
out = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False)
# conv
out = F.conv2d(
out,
self.weight * self.scale,
bias=self.bias,
stride=self.stride,
padding=self.padding,
)
# activation
if self.activation is not None:
out = self.activation(out)
return out
class ResUpBlock(nn.Module):
"""Residual block with upsampling.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
"""
def __init__(self, in_channels, out_channels):
super(ResUpBlock, self).__init__()
self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
self.conv2 = ConvUpLayer(
in_channels, out_channels, 3, stride=1, padding=1, bias=True, activate=True
)
self.skip = ConvUpLayer(
in_channels, out_channels, 1, bias=False, activate=False
)
def forward(self, x):
out = self.conv1(x)
out = self.conv2(out)
skip = self.skip(x)
out = (out + skip) / math.sqrt(2)
return out
class GFPGANv1(nn.Module):
"""The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
Args:
out_size (int): The spatial size of outputs.
num_style_feat (int): Channel number of style features. Default: 512.
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be
applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1).
decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
fix_decoder (bool): Whether to fix the decoder. Default: True.
num_mlp (int): Layer number of MLP style layers. Default: 8.
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
input_is_latent (bool): Whether input is latent style. Default: False.
different_w (bool): Whether to use different latent w for different layers. Default: False.
narrow (float): The narrow ratio for channels. Default: 1.
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
"""
def __init__(
self,
out_size,
num_style_feat=512,
channel_multiplier=1,
resample_kernel=(1, 3, 3, 1),
decoder_load_path=None,
fix_decoder=True,
# for stylegan decoder
num_mlp=8,
lr_mlp=0.01,
input_is_latent=False,
different_w=False,
narrow=1,
sft_half=False,
):
super(GFPGANv1, self).__init__()
self.input_is_latent = input_is_latent
self.different_w = different_w
self.num_style_feat = num_style_feat
unet_narrow = narrow * 0.5 # by default, use a half of input channels
channels = {
"4": int(512 * unet_narrow),
"8": int(512 * unet_narrow),
"16": int(512 * unet_narrow),
"32": int(512 * unet_narrow),
"64": int(256 * channel_multiplier * unet_narrow),
"128": int(128 * channel_multiplier * unet_narrow),
"256": int(64 * channel_multiplier * unet_narrow),
"512": int(32 * channel_multiplier * unet_narrow),
"1024": int(16 * channel_multiplier * unet_narrow),
}
self.log_size = int(math.log(out_size, 2))
first_out_size = 2 ** (int(math.log(out_size, 2)))
self.conv_body_first = ConvLayer(
3, channels[f"{first_out_size}"], 1, bias=True, activate=True
)
# downsample
in_channels = channels[f"{first_out_size}"]
self.conv_body_down = nn.ModuleList()
for i in range(self.log_size, 2, -1):
out_channels = channels[f"{2**(i - 1)}"]
self.conv_body_down.append(
ResBlock(in_channels, out_channels, resample_kernel)
)
in_channels = out_channels
self.final_conv = ConvLayer(
in_channels, channels["4"], 3, bias=True, activate=True
)
# upsample
in_channels = channels["4"]
self.conv_body_up = nn.ModuleList()
for i in range(3, self.log_size + 1):
out_channels = channels[f"{2**i}"]
self.conv_body_up.append(ResUpBlock(in_channels, out_channels))
in_channels = out_channels
# to RGB
self.toRGB = nn.ModuleList()
for i in range(3, self.log_size + 1):
self.toRGB.append(
EqualConv2d(
channels[f"{2**i}"],
3,
1,
stride=1,
padding=0,
bias=True,
bias_init_val=0,
)
)
if different_w:
linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
else:
linear_out_channel = num_style_feat
self.final_linear = EqualLinear(
channels["4"] * 4 * 4,
linear_out_channel,
bias=True,
bias_init_val=0,
lr_mul=1,
activation=None,
)
# the decoder: stylegan2 generator with SFT modulations
self.stylegan_decoder = StyleGAN2GeneratorSFT(
out_size=out_size,
num_style_feat=num_style_feat,
num_mlp=num_mlp,
channel_multiplier=channel_multiplier,
resample_kernel=resample_kernel,
lr_mlp=lr_mlp,
narrow=narrow,
sft_half=sft_half,
)
# load pre-trained stylegan2 model if necessary
if decoder_load_path:
self.stylegan_decoder.load_state_dict(
torch.load(
decoder_load_path, map_location=lambda storage, loc: storage
)["params_ema"]
)
# fix decoder without updating params
if fix_decoder:
for _, param in self.stylegan_decoder.named_parameters():
param.requires_grad = False
# for SFT modulations (scale and shift)
self.condition_scale = nn.ModuleList()
self.condition_shift = nn.ModuleList()
for i in range(3, self.log_size + 1):
out_channels = channels[f"{2**i}"]
if sft_half:
sft_out_channels = out_channels
else:
sft_out_channels = out_channels * 2
self.condition_scale.append(
nn.Sequential(
EqualConv2d(
out_channels,
out_channels,
3,
stride=1,
padding=1,
bias=True,
bias_init_val=0,
),
ScaledLeakyReLU(0.2),
EqualConv2d(
out_channels,
sft_out_channels,
3,
stride=1,
padding=1,
bias=True,
bias_init_val=1,
),
)
)
self.condition_shift.append(
nn.Sequential(
EqualConv2d(
out_channels,
out_channels,
3,
stride=1,
padding=1,
bias=True,
bias_init_val=0,
),
ScaledLeakyReLU(0.2),
EqualConv2d(
out_channels,
sft_out_channels,
3,
stride=1,
padding=1,
bias=True,
bias_init_val=0,
),
)
)
def forward(
self, x, return_latents=False, return_rgb=True, randomize_noise=True, **kwargs
):
"""Forward function for GFPGANv1.
Args:
x (Tensor): Input images.
return_latents (bool): Whether to return style latents. Default: False.
return_rgb (bool): Whether return intermediate rgb images. Default: True.
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
"""
conditions = []
unet_skips = []
out_rgbs = []
# encoder
feat = self.conv_body_first(x)
for i in range(self.log_size - 2):
feat = self.conv_body_down[i](feat)
unet_skips.insert(0, feat)
feat = self.final_conv(feat)
# style code
style_code = self.final_linear(feat.view(feat.size(0), -1))
if self.different_w:
style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
# decode
for i in range(self.log_size - 2):
# add unet skip
feat = feat + unet_skips[i]
# ResUpLayer
feat = self.conv_body_up[i](feat)
# generate scale and shift for SFT layers
scale = self.condition_scale[i](feat)
conditions.append(scale.clone())
shift = self.condition_shift[i](feat)
conditions.append(shift.clone())
# generate rgb images
if return_rgb:
out_rgbs.append(self.toRGB[i](feat))
# decoder
image, _ = self.stylegan_decoder(
[style_code],
conditions,
return_latents=return_latents,
input_is_latent=self.input_is_latent,
randomize_noise=randomize_noise,
)
return image, out_rgbs
class FacialComponentDiscriminator(nn.Module):
"""Facial component (eyes, mouth, noise) discriminator used in GFPGAN."""
def __init__(self):
super(FacialComponentDiscriminator, self).__init__()
# It now uses a VGG-style architectrue with fixed model size
self.conv1 = ConvLayer(
3,
64,
3,
downsample=False,
resample_kernel=(1, 3, 3, 1),
bias=True,
activate=True,
)
self.conv2 = ConvLayer(
64,
128,
3,
downsample=True,
resample_kernel=(1, 3, 3, 1),
bias=True,
activate=True,
)
self.conv3 = ConvLayer(
128,
128,
3,
downsample=False,
resample_kernel=(1, 3, 3, 1),
bias=True,
activate=True,
)
self.conv4 = ConvLayer(
128,
256,
3,
downsample=True,
resample_kernel=(1, 3, 3, 1),
bias=True,
activate=True,
)
self.conv5 = ConvLayer(
256,
256,
3,
downsample=False,
resample_kernel=(1, 3, 3, 1),
bias=True,
activate=True,
)
self.final_conv = ConvLayer(256, 1, 3, bias=True, activate=False)
def forward(self, x, return_feats=False, **kwargs):
"""Forward function for FacialComponentDiscriminator.
Args:
x (Tensor): Input images.
return_feats (bool): Whether to return intermediate features. Default: False.
"""
feat = self.conv1(x)
feat = self.conv3(self.conv2(feat))
rlt_feats = []
if return_feats:
rlt_feats.append(feat.clone())
feat = self.conv5(self.conv4(feat))
if return_feats:
rlt_feats.append(feat.clone())
out = self.final_conv(feat)
if return_feats:
return out, rlt_feats
else:
return out, None
|