|
import torch |
|
from torch import nn |
|
from ldm_patched.ldm.modules.attention import CrossAttention |
|
from inspect import isfunction |
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def uniq(arr): |
|
return{el: True for el in arr}.keys() |
|
|
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if isfunction(d) else d |
|
|
|
|
|
|
|
class GEGLU(nn.Module): |
|
def __init__(self, dim_in, dim_out): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
|
|
def forward(self, x): |
|
x, gate = self.proj(x).chunk(2, dim=-1) |
|
return x * torch.nn.functional.gelu(gate) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = default(dim_out, dim) |
|
project_in = nn.Sequential( |
|
nn.Linear(dim, inner_dim), |
|
nn.GELU() |
|
) if not glu else GEGLU(dim, inner_dim) |
|
|
|
self.net = nn.Sequential( |
|
project_in, |
|
nn.Dropout(dropout), |
|
nn.Linear(inner_dim, dim_out) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
class GatedCrossAttentionDense(nn.Module): |
|
def __init__(self, query_dim, context_dim, n_heads, d_head): |
|
super().__init__() |
|
|
|
self.attn = CrossAttention( |
|
query_dim=query_dim, |
|
context_dim=context_dim, |
|
heads=n_heads, |
|
dim_head=d_head) |
|
self.ff = FeedForward(query_dim, glu=True) |
|
|
|
self.norm1 = nn.LayerNorm(query_dim) |
|
self.norm2 = nn.LayerNorm(query_dim) |
|
|
|
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.))) |
|
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.))) |
|
|
|
|
|
|
|
|
|
self.scale = 1 |
|
|
|
def forward(self, x, objs): |
|
|
|
x = x + self.scale * \ |
|
torch.tanh(self.alpha_attn) * self.attn(self.norm1(x), objs, objs) |
|
x = x + self.scale * \ |
|
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x)) |
|
|
|
return x |
|
|
|
|
|
class GatedSelfAttentionDense(nn.Module): |
|
def __init__(self, query_dim, context_dim, n_heads, d_head): |
|
super().__init__() |
|
|
|
|
|
|
|
self.linear = nn.Linear(context_dim, query_dim) |
|
|
|
self.attn = CrossAttention( |
|
query_dim=query_dim, |
|
context_dim=query_dim, |
|
heads=n_heads, |
|
dim_head=d_head) |
|
self.ff = FeedForward(query_dim, glu=True) |
|
|
|
self.norm1 = nn.LayerNorm(query_dim) |
|
self.norm2 = nn.LayerNorm(query_dim) |
|
|
|
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.))) |
|
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.))) |
|
|
|
|
|
|
|
|
|
self.scale = 1 |
|
|
|
def forward(self, x, objs): |
|
|
|
N_visual = x.shape[1] |
|
objs = self.linear(objs) |
|
|
|
x = x + self.scale * torch.tanh(self.alpha_attn) * self.attn( |
|
self.norm1(torch.cat([x, objs], dim=1)))[:, 0:N_visual, :] |
|
x = x + self.scale * \ |
|
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x)) |
|
|
|
return x |
|
|
|
|
|
class GatedSelfAttentionDense2(nn.Module): |
|
def __init__(self, query_dim, context_dim, n_heads, d_head): |
|
super().__init__() |
|
|
|
|
|
|
|
self.linear = nn.Linear(context_dim, query_dim) |
|
|
|
self.attn = CrossAttention( |
|
query_dim=query_dim, context_dim=query_dim, dim_head=d_head) |
|
self.ff = FeedForward(query_dim, glu=True) |
|
|
|
self.norm1 = nn.LayerNorm(query_dim) |
|
self.norm2 = nn.LayerNorm(query_dim) |
|
|
|
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.))) |
|
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.))) |
|
|
|
|
|
|
|
|
|
self.scale = 1 |
|
|
|
def forward(self, x, objs): |
|
|
|
B, N_visual, _ = x.shape |
|
B, N_ground, _ = objs.shape |
|
|
|
objs = self.linear(objs) |
|
|
|
|
|
size_v = math.sqrt(N_visual) |
|
size_g = math.sqrt(N_ground) |
|
assert int(size_v) == size_v, "Visual tokens must be square rootable" |
|
assert int(size_g) == size_g, "Grounding tokens must be square rootable" |
|
size_v = int(size_v) |
|
size_g = int(size_g) |
|
|
|
|
|
out = self.attn(self.norm1(torch.cat([x, objs], dim=1)))[ |
|
:, N_visual:, :] |
|
out = out.permute(0, 2, 1).reshape(B, -1, size_g, size_g) |
|
out = torch.nn.functional.interpolate( |
|
out, (size_v, size_v), mode='bicubic') |
|
residual = out.reshape(B, -1, N_visual).permute(0, 2, 1) |
|
|
|
|
|
x = x + self.scale * torch.tanh(self.alpha_attn) * residual |
|
x = x + self.scale * \ |
|
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x)) |
|
|
|
return x |
|
|
|
|
|
class FourierEmbedder(): |
|
def __init__(self, num_freqs=64, temperature=100): |
|
|
|
self.num_freqs = num_freqs |
|
self.temperature = temperature |
|
self.freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs) |
|
|
|
@torch.no_grad() |
|
def __call__(self, x, cat_dim=-1): |
|
"x: arbitrary shape of tensor. dim: cat dim" |
|
out = [] |
|
for freq in self.freq_bands: |
|
out.append(torch.sin(freq * x)) |
|
out.append(torch.cos(freq * x)) |
|
return torch.cat(out, cat_dim) |
|
|
|
|
|
class PositionNet(nn.Module): |
|
def __init__(self, in_dim, out_dim, fourier_freqs=8): |
|
super().__init__() |
|
self.in_dim = in_dim |
|
self.out_dim = out_dim |
|
|
|
self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs) |
|
self.position_dim = fourier_freqs * 2 * 4 |
|
|
|
self.linears = nn.Sequential( |
|
nn.Linear(self.in_dim + self.position_dim, 512), |
|
nn.SiLU(), |
|
nn.Linear(512, 512), |
|
nn.SiLU(), |
|
nn.Linear(512, out_dim), |
|
) |
|
|
|
self.null_positive_feature = torch.nn.Parameter( |
|
torch.zeros([self.in_dim])) |
|
self.null_position_feature = torch.nn.Parameter( |
|
torch.zeros([self.position_dim])) |
|
|
|
def forward(self, boxes, masks, positive_embeddings): |
|
B, N, _ = boxes.shape |
|
dtype = self.linears[0].weight.dtype |
|
masks = masks.unsqueeze(-1).to(dtype) |
|
positive_embeddings = positive_embeddings.to(dtype) |
|
|
|
|
|
xyxy_embedding = self.fourier_embedder(boxes.to(dtype)) |
|
|
|
|
|
positive_null = self.null_positive_feature.view(1, 1, -1) |
|
xyxy_null = self.null_position_feature.view(1, 1, -1) |
|
|
|
|
|
positive_embeddings = positive_embeddings * \ |
|
masks + (1 - masks) * positive_null |
|
xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null |
|
|
|
objs = self.linears( |
|
torch.cat([positive_embeddings, xyxy_embedding], dim=-1)) |
|
assert objs.shape == torch.Size([B, N, self.out_dim]) |
|
return objs |
|
|
|
|
|
class Gligen(nn.Module): |
|
def __init__(self, modules, position_net, key_dim): |
|
super().__init__() |
|
self.module_list = nn.ModuleList(modules) |
|
self.position_net = position_net |
|
self.key_dim = key_dim |
|
self.max_objs = 30 |
|
self.current_device = torch.device("cpu") |
|
|
|
def _set_position(self, boxes, masks, positive_embeddings): |
|
objs = self.position_net(boxes, masks, positive_embeddings) |
|
def func(x, extra_options): |
|
key = extra_options["transformer_index"] |
|
module = self.module_list[key] |
|
return module(x, objs) |
|
return func |
|
|
|
def set_position(self, latent_image_shape, position_params, device): |
|
batch, c, h, w = latent_image_shape |
|
masks = torch.zeros([self.max_objs], device="cpu") |
|
boxes = [] |
|
positive_embeddings = [] |
|
for p in position_params: |
|
x1 = (p[4]) / w |
|
y1 = (p[3]) / h |
|
x2 = (p[4] + p[2]) / w |
|
y2 = (p[3] + p[1]) / h |
|
masks[len(boxes)] = 1.0 |
|
boxes += [torch.tensor((x1, y1, x2, y2)).unsqueeze(0)] |
|
positive_embeddings += [p[0]] |
|
append_boxes = [] |
|
append_conds = [] |
|
if len(boxes) < self.max_objs: |
|
append_boxes = [torch.zeros( |
|
[self.max_objs - len(boxes), 4], device="cpu")] |
|
append_conds = [torch.zeros( |
|
[self.max_objs - len(boxes), self.key_dim], device="cpu")] |
|
|
|
box_out = torch.cat( |
|
boxes + append_boxes).unsqueeze(0).repeat(batch, 1, 1) |
|
masks = masks.unsqueeze(0).repeat(batch, 1) |
|
conds = torch.cat(positive_embeddings + |
|
append_conds).unsqueeze(0).repeat(batch, 1, 1) |
|
return self._set_position( |
|
box_out.to(device), |
|
masks.to(device), |
|
conds.to(device)) |
|
|
|
def set_empty(self, latent_image_shape, device): |
|
batch, c, h, w = latent_image_shape |
|
masks = torch.zeros([self.max_objs], device="cpu").repeat(batch, 1) |
|
box_out = torch.zeros([self.max_objs, 4], |
|
device="cpu").repeat(batch, 1, 1) |
|
conds = torch.zeros([self.max_objs, self.key_dim], |
|
device="cpu").repeat(batch, 1, 1) |
|
return self._set_position( |
|
box_out.to(device), |
|
masks.to(device), |
|
conds.to(device)) |
|
|
|
|
|
def load_gligen(sd): |
|
sd_k = sd.keys() |
|
output_list = [] |
|
key_dim = 768 |
|
for a in ["input_blocks", "middle_block", "output_blocks"]: |
|
for b in range(20): |
|
k_temp = filter(lambda k: "{}.{}.".format(a, b) |
|
in k and ".fuser." in k, sd_k) |
|
k_temp = map(lambda k: (k, k.split(".fuser.")[-1]), k_temp) |
|
|
|
n_sd = {} |
|
for k in k_temp: |
|
n_sd[k[1]] = sd[k[0]] |
|
if len(n_sd) > 0: |
|
query_dim = n_sd["linear.weight"].shape[0] |
|
key_dim = n_sd["linear.weight"].shape[1] |
|
|
|
if key_dim == 768: |
|
n_heads = 8 |
|
d_head = query_dim // n_heads |
|
else: |
|
d_head = 64 |
|
n_heads = query_dim // d_head |
|
|
|
gated = GatedSelfAttentionDense( |
|
query_dim, key_dim, n_heads, d_head) |
|
gated.load_state_dict(n_sd, strict=False) |
|
output_list.append(gated) |
|
|
|
if "position_net.null_positive_feature" in sd_k: |
|
in_dim = sd["position_net.null_positive_feature"].shape[0] |
|
out_dim = sd["position_net.linears.4.weight"].shape[0] |
|
|
|
class WeightsLoader(torch.nn.Module): |
|
pass |
|
w = WeightsLoader() |
|
w.position_net = PositionNet(in_dim, out_dim) |
|
w.load_state_dict(sd, strict=False) |
|
|
|
gligen = Gligen(output_list, w.position_net, key_dim) |
|
return gligen |
|
|