PereLluis13 commited on
Commit
4e6bd61
1 Parent(s): da80bd2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -11,7 +11,7 @@ def load_tok_and_data(lan):
11
  tokenizer._src_lang = _Tokens[lan]
12
  tokenizer.cur_lang_code_id = tokenizer.convert_tokens_to_ids(_Tokens[lan])
13
  tokenizer.set_src_lang_special_tokens(_Tokens[lan])
14
- dataset = load_dataset('Babelscape/SREDFM', lan, split="validation", streaming=True)
15
  dataset = [example for example in dataset.take(1001)]
16
  return (tokenizer, dataset)
17
 
@@ -62,7 +62,7 @@ def extract_triplets_typed(text):
62
  triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type})
63
  return triplets
64
 
65
- st.markdown("""This is a demo for the ACL 2023 paper [RED<sup>FM</sup>: a Filtered and Multilingual Relation Extraction Dataset](https://arxiv.org/abs/2306.09802). The pre-trained model is able to extract triplets for up to 400 relation types from Wikidata or be used in downstream Relation Extraction task by fine-tuning. Find the model card [here](https://huggingface.co/Babelscape/mrebel-large). Read more about it in the [paper](https://arxiv.org/abs/2306.09802) and in the original [repository](https://github.com/Babelscape/rebel#REDFM).""")
66
 
67
  model = load_model()
68
 
@@ -70,7 +70,7 @@ lan = st.selectbox(
70
  'Select a Language',
71
  ('ar', 'ca', 'de', 'el', 'en', 'es', 'fr', 'hi', 'it', 'ja', 'ko', 'nl', 'pl', 'pt', 'ru', 'sv', 'vi', 'zh'), index=1)
72
 
73
- _Tokens = {'en': 'en_XX', 'de': 'de_DE', 'ca': 'ca_XX', 'ar': 'ar_AR', 'el': 'el_EL', 'it': 'it_IT', 'ja': 'ja_XX', 'ko': 'ko_KR', 'hi': 'hi_IN', 'pt': 'pt_XX', 'ru': 'ru_RU', 'pl': 'pl_PL', 'zh': 'zh_CN', 'fr': 'fr_XX', 'vi': 'vi_VN', 'sv':'sv_SE'}
74
 
75
  tokenizer, dataset = load_tok_and_data(lan)
76
 
 
11
  tokenizer._src_lang = _Tokens[lan]
12
  tokenizer.cur_lang_code_id = tokenizer.convert_tokens_to_ids(_Tokens[lan])
13
  tokenizer.set_src_lang_special_tokens(_Tokens[lan])
14
+ dataset = load_dataset('Babelscape/SREDFM', lan, split="test", streaming=True)
15
  dataset = [example for example in dataset.take(1001)]
16
  return (tokenizer, dataset)
17
 
 
62
  triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type})
63
  return triplets
64
 
65
+ st.markdown("""This is a demo for the ACL 2023 paper [RED$^{\rm FM}$: a Filtered and Multilingual Relation Extraction Dataset](https://arxiv.org/abs/2306.09802). The pre-trained model is able to extract triplets for up to 400 relation types from Wikidata or be used in downstream Relation Extraction task by fine-tuning. Find the model card [here](https://huggingface.co/Babelscape/mrebel-large). Read more about it in the [paper](https://arxiv.org/abs/2306.09802) and in the original [repository](https://github.com/Babelscape/rebel#REDFM).""")
66
 
67
  model = load_model()
68
 
 
70
  'Select a Language',
71
  ('ar', 'ca', 'de', 'el', 'en', 'es', 'fr', 'hi', 'it', 'ja', 'ko', 'nl', 'pl', 'pt', 'ru', 'sv', 'vi', 'zh'), index=1)
72
 
73
+ _Tokens = {'en': 'en_XX', 'de': 'de_DE', 'ca': 'ca_XX', 'ar': 'ar_AR', 'el': 'el_EL', 'es': 'es_XX', 'it': 'it_IT', 'ja': 'ja_XX', 'ko': 'ko_KR', 'hi': 'hi_IN', 'pt': 'pt_XX', 'ru': 'ru_RU', 'pl': 'pl_PL', 'zh': 'zh_CN', 'fr': 'fr_XX', 'vi': 'vi_VN', 'sv':'sv_SE'}
74
 
75
  tokenizer, dataset = load_tok_and_data(lan)
76