Spaces:
Runtime error
Runtime error
PereLluis13
commited on
Commit
•
e6f2745
1
Parent(s):
1678277
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from datasets import load_dataset
|
3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
+
from time import time
|
5 |
+
import torch
|
6 |
+
|
7 |
+
@st.cache(
|
8 |
+
allow_output_mutation=True,
|
9 |
+
hash_funcs={
|
10 |
+
AutoTokenizer: lambda x: None,
|
11 |
+
AutoModelForSeq2SeqLM: lambda x: None,
|
12 |
+
},
|
13 |
+
suppress_st_warning=True
|
14 |
+
)
|
15 |
+
def load_models(lan):
|
16 |
+
st_time = time()
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("Babelscape/mrebel-large", src_lang=_Tokens[lan], "tgt_lang": "tp_XX")
|
18 |
+
print("+++++ loading Model", time() - st_time)
|
19 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/mrebel-large")
|
20 |
+
if torch.cuda.is_available():
|
21 |
+
_ = model.to("cuda:0") # comment if no GPU available
|
22 |
+
_ = model.eval()
|
23 |
+
print("+++++ loaded model", time() - st_time)
|
24 |
+
dataset = load_dataset('Babelscape/SREDFM', lan, split="validation", streaming=True)
|
25 |
+
dataset = [example for example in dataset.take(1001)]
|
26 |
+
return (tokenizer, model, dataset)
|
27 |
+
|
28 |
+
def extract_triplets_typed(text):
|
29 |
+
triplets = []
|
30 |
+
relation = ''
|
31 |
+
text = text.strip()
|
32 |
+
current = 'x'
|
33 |
+
subject, relation, object_, object_type, subject_type = '','','','',''
|
34 |
+
|
35 |
+
for token in text.replace("<s>", "").replace("<pad>", "").replace("</s>", "").replace("tp_XX", "").replace("__en__", "").split():
|
36 |
+
if token == "<triplet>" or token == "<relation>":
|
37 |
+
current = 't'
|
38 |
+
if relation != '':
|
39 |
+
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type})
|
40 |
+
relation = ''
|
41 |
+
subject = ''
|
42 |
+
elif token.startswith("<") and token.endswith(">"):
|
43 |
+
if current == 't' or current == 'o':
|
44 |
+
current = 's'
|
45 |
+
if relation != '':
|
46 |
+
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type})
|
47 |
+
object_ = ''
|
48 |
+
subject_type = token[1:-1]
|
49 |
+
else:
|
50 |
+
current = 'o'
|
51 |
+
object_type = token[1:-1]
|
52 |
+
relation = ''
|
53 |
+
else:
|
54 |
+
if current == 't':
|
55 |
+
subject += ' ' + token
|
56 |
+
elif current == 's':
|
57 |
+
object_ += ' ' + token
|
58 |
+
elif current == 'o':
|
59 |
+
relation += ' ' + token
|
60 |
+
if subject != '' and relation != '' and object_ != '' and object_type != '' and subject_type != '':
|
61 |
+
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type})
|
62 |
+
return triplets
|
63 |
+
|
64 |
+
st.markdown("""This is a demo for the Findings of EMNLP 2021 paper [REBEL: Relation Extraction By End-to-end Language generation](https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf). The pre-trained model is able to extract triplets for up to 200 relation types from Wikidata or be used in downstream Relation Extraction task by fine-tuning. Find the model card [here](https://huggingface.co/Babelscape/rebel-large). Read more about it in the [paper](https://aclanthology.org/2021.findings-emnlp.204) and in the original [repository](https://github.com/Babelscape/rebel).""")
|
65 |
+
|
66 |
+
lan = st.selectbox(
|
67 |
+
'Select a Language',
|
68 |
+
('ar', 'ca', 'de', 'el', 'en', 'es', 'fr', 'hi', 'it', 'ja', 'ko', 'nl', 'pl', 'pt', 'ru', 'sv', 'vi', 'zh'))
|
69 |
+
|
70 |
+
_Tokens = {'en': 'en_XX', 'de': 'de_DE', 'ca': 'ca_XX', 'ar': 'ar_AR', 'el': 'el_EL', 'it': 'it_IT', 'ja': 'ja_XX', 'ko': 'ko_KR', 'hi': 'hi_IN', 'pt': 'pt_XX', 'ru': 'ru_RU', 'pl': 'pl_PL', 'zh': 'zh_CN', 'fr': 'fr_XX', 'vi': 'vi_VN', 'sv':'sv_SE'}
|
71 |
+
|
72 |
+
tokenizer, model, dataset = load_models(lan)
|
73 |
+
|
74 |
+
agree = st.checkbox('Free input', False)
|
75 |
+
if agree:
|
76 |
+
text = st.text_input('Input text', 'Els Red Hot Chili Peppers es van formar a Los Angeles per Kiedis, Flea, el guitarrista Hillel Slovak i el bateria Jack Irons.')
|
77 |
+
print(text)
|
78 |
+
else:
|
79 |
+
dataset_example = st.slider('dataset id', 0, 1000, 0)
|
80 |
+
text = dataset[dataset_example]['context']
|
81 |
+
length_penalty = st.slider('length_penalty', 0, 10, 0)
|
82 |
+
num_beams = st.slider('num_beams', 1, 20, 3)
|
83 |
+
num_return_sequences = st.slider('num_return_sequences', 1, num_beams, 2)
|
84 |
+
|
85 |
+
gen_kwargs = {
|
86 |
+
"max_length": 256,
|
87 |
+
"length_penalty": length_penalty,
|
88 |
+
"num_beams": num_beams,
|
89 |
+
"num_return_sequences": num_return_sequences,
|
90 |
+
"forced_bos_token_id": None,
|
91 |
+
}
|
92 |
+
|
93 |
+
model_inputs = tokenizer(text, max_length=256, padding=True, truncation=True, return_tensors = 'pt')
|
94 |
+
generated_tokens = model.generate(
|
95 |
+
model_inputs["input_ids"].to(model.device),
|
96 |
+
attention_mask=model_inputs["attention_mask"].to(model.device),
|
97 |
+
decoder_start_token_id = tokenizer.convert_tokens_to_ids("tp_XX"),
|
98 |
+
**gen_kwargs,
|
99 |
+
)
|
100 |
+
|
101 |
+
decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=False)
|
102 |
+
st.title('Input text')
|
103 |
+
|
104 |
+
st.write(text)
|
105 |
+
|
106 |
+
if not agree:
|
107 |
+
st.title('Silver output')
|
108 |
+
st.write(dataset[dataset_example]['triplets'])
|
109 |
+
st.write(extract_triplets_typed(dataset[dataset_example]['triplets']))
|
110 |
+
|
111 |
+
st.title('Prediction text')
|
112 |
+
decoded_preds = [text.replace('<s>', '').replace('</s>', '').replace('<pad>', '') for text in decoded_preds]
|
113 |
+
st.write(decoded_preds)
|
114 |
+
|
115 |
+
for idx, sentence in enumerate(decoded_preds):
|
116 |
+
st.title(f'Prediction triplets sentence {idx}')
|
117 |
+
st.write(extract_triplets_typed(sentence))
|