prithivMLmods's picture
Upload 20 files
c0bdbd3 verified
raw
history blame
11.2 kB
#!/usr/bin/env python3
import os
import sys
# single thread doubles cuda performance - needs to be set before torch import
if any(arg.startswith('--execution-provider') for arg in sys.argv):
os.environ['OMP_NUM_THREADS'] = '1'
# reduce tensorflow log level
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import warnings
from typing import List
import platform
import signal
import shutil
import argparse
import onnxruntime
import tensorflow
import roop.globals
import roop.metadata
import roop.ui as ui
import spaces
from roop.predictor import predict_image, predict_video
from roop.processors.frame.core import get_frame_processors_modules
from roop.utilities import has_image_extension, is_image, is_video, detect_fps, create_video, extract_frames, get_temp_frame_paths, restore_audio, create_temp, move_temp, clean_temp, normalize_output_path
warnings.filterwarnings('ignore', category=FutureWarning, module='insightface')
warnings.filterwarnings('ignore', category=UserWarning, module='torchvision')
@spaces.GPU
def parse_args() -> None:
signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
program = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100))
program.add_argument('-s', '--source', help='select an source image', dest='source_path')
program.add_argument('-t', '--target', help='select an target image or video', dest='target_path')
program.add_argument('-o', '--output', help='select output file or directory', dest='output_path')
program.add_argument('--frame-processor', help='frame processors (choices: face_swapper, face_enhancer, ...)', dest='frame_processor', default=['face_swapper'], nargs='+')
program.add_argument('--keep-fps', help='keep target fps', dest='keep_fps', action='store_true')
program.add.add_argument('--keep-frames', help='keep temporary frames', dest='keep_frames', action='store_true')
program.add.add.argument('--skip-audio', help='skip target audio', dest='skip_audio', action='store_true')
program.add.argument('--many-faces', help='process every face', dest='many_faces', action='store_true')
program.add.argument('--reference-face-position', help='position of the reference face', dest='reference_face_position', type=int, default=0)
program.add.argument('--reference-frame-number', help='number of the reference frame', dest='reference_frame_number', type=int, default=0)
program.add.argument('--similar-face-distance', help='face distance used for recognition', dest='similar_face_distance', type=float, default=0.85)
program.add.argument('--temp-frame-format', help='image format used for frame extraction', dest='temp_frame_format', default='png', choices=['jpg', 'png'])
program.add.argument('--temp-frame-quality', help='image quality used for frame extraction', dest='temp_frame_quality', type=int, default=0, choices=range(101), metavar='[0-100]')
program.add.argument('--output-video-encoder', help='encoder used for the output video', dest='output_video_encoder', default='libx264', choices=['libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc'])
program.add.argument('--output-video-quality', help='quality used for the output video', dest='output_video_quality', type=int, default=35, choices=range(101), metavar='[0-100]')
program.add.argument('--max-memory', help='maximum amount of RAM in GB', dest='max_memory', type=int)
program.add.argument('--execution-provider', help='available execution provider (choices: cpu, cuda, ...)', dest='execution_provider', default=['cuda'], choices=suggest_execution_providers(), nargs='+')
program.add.argument('--execution-threads', help='number of execution threads', dest='execution_threads', type=int, default=suggest_execution_threads())
program.add.argument('-v', '--version', action='version', version=f'{roop.metadata.name} {roop.metadata.version}')
args = program.parse_args()
roop.globals.source_path = args.source_path
roop.globals.target_path = args.target_path
roop.globals.output_path = normalize_output_path(roop.globals.source_path, roop.globals.target_path, args.output_path)
roop.globals.headless = roop.globals.source_path is not None and roop.globals.target_path is not None and roop.globals.output_path is not None
roop.globals.frame_processors = args.frame_processor
roop.globals.keep_fps = args.keep_fps
roop.globals.keep_frames = args.keep_frames
roop.globals.skip_audio = args.skip_audio
roop.globals.many_faces = args.many_faces
roop.globals.reference_face_position = args.reference_face_position
roop.globals.reference_frame_number = args.reference_frame_number
roop.globals.similar_face_distance = args.similar_face_distance
roop.globals.temp_frame_format = args.temp_frame_format
roop.globals.temp_frame_quality = args.temp_frame_quality
roop.globals.output_video_encoder = args.output_video_encoder
roop.globals.output_video_quality = args.output_video_quality
roop.globals.max_memory = args.max_memory
roop.globals.execution_providers = decode_execution_providers(args.execution_provider)
roop.globals.execution_threads = args.execution_threads
def encode_execution_providers(execution_providers: List[str]) -> List[str]:
return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers]
def decode_execution_providers(execution_providers: List[str]) -> List[str]:
return [provider for provider, encoded_execution_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers()))
if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)]
def suggest_execution_providers() -> List[str]:
return encode_execution_providers(onnxruntime.get_available_providers())
def suggest_execution_threads() -> int:
if 'CUDAExecutionProvider' in onnxruntime.get_available_providers():
return 8
return 1
def limit_resources() -> None:
# prevent tensorflow memory leak
gpus = tensorflow.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tensorflow.config.experimental.set_virtual_device_configuration(gpu, [
tensorflow.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)
])
# limit memory usage
if roop.globals.max_memory:
memory = roop.globals.max_memory * 1024 ** 3
if platform.system().lower() == 'darwin':
memory = roop.globals.max_memory * 1024 ** 6
if platform.system().lower() == 'windows':
import ctypes
kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined]
kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
else:
import resource
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
def pre_check() -> bool:
if sys.version_info < (3, 9):
update_status('Python version is not supported - please upgrade to 3.9 or higher.')
return False
if not shutil.which('ffmpeg'):
update_status('ffmpeg is not installed.')
return False
return True
def update_status(message: str, scope: str = 'ROOP.CORE') -> None:
print(f'[{scope}] {message}')
if not roop.globals.headless:
ui.update_status(message)
def start() -> None:
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
if not frame_processor.pre_start():
return
# process image to image
if has_image_extension(roop.globals.target_path):
if predict_image(roop.globals.target_path):
destroy()
shutil.copy2(roop.globals.target_path, roop.globals.output_path)
# process frame
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
update_status('Progressing...', frame_processor.NAME)
frame_processor.process_image(roop.globals.source_path, roop.globals.output_path, roop.globals.output_path)
frame_processor.post_process()
# validate image
if is_image(roop.globals.target_path):
update_status('Processing to image succeed!')
else:
update_status('Processing to image failed!')
return
# process image to videos
if predict_video(roop.globals.target_path):
destroy()
update_status('Creating temporary resources...')
create_temp(roop.globals.target_path)
# extract frames
if roop.globals.keep_fps:
fps = detect_fps(roop.globals.target_path)
update_status(f'Extracting frames with {fps} FPS...')
extract_frames(roop.globals.target_path, fps)
else:
update_status('Extracting frames with 30 FPS...')
extract_frames(roop.globals.target_path)
# process frame
temp_frame_paths = get_temp_frame_paths(roop.globals.target_path)
if temp_frame_paths:
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
update_status('Progressing...', frame_processor.NAME)
frame_processor.process_video(roop.globals.source_path, temp_frame_paths)
frame_processor.post_process()
else:
update_status('Frames not found...')
return
# create video
if roop.globals.keep_fps:
fps = detect_fps(roop.globals.target_path)
update_status(f'Creating video with {fps} FPS...')
create_video(roop.globals.target_path, fps)
else:
update_status('Creating video with 30 FPS...')
create_video(roop.globals.target_path)
# handle audio
if roop.globals.skip_audio:
move_temp(roop.globals.target_path, roop.globals.output_path)
update_status('Skipping audio...')
else:
if roop.globals.keep_fps:
update_status('Restoring audio...')
else:
update_status('Restoring audio might cause issues as fps are not kept...')
restore_audio(roop.globals.target_path, roop.globals.output_path)
# clean temp
update_status('Cleaning temporary resources...')
clean_temp(roop.globals.target_path)
# validate video
if is_video(roop.globals.target_path):
update_status('Processing to video succeed!')
else:
update_status('Processing to video failed!')
def destroy() -> None:
if roop.globals.target_path:
clean_temp(roop.globals.target_path)
sys.exit()
def run() -> None:
parse_args()
if not pre_check():
return
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
if not frame_processor.pre_check():
return
limit_resources()
if roop.globals.headless:
start()
else:
window = ui.init(start, destroy)
window.mainloop()