Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
from datasets import load_dataset | |
import librosa | |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline | |
from transformers import WhisperForConditionalGeneration, WhisperProcessor | |
from transformers import VitsModel, VitsTokenizer | |
target_dtype = np.int16 | |
max_range = np.iinfo(target_dtype).max | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
model_mms = VitsModel.from_pretrained("facebook/mms-tts-nld") | |
tokenizer_mms = VitsTokenizer.from_pretrained("facebook/mms-tts-nld") | |
processor = WhisperProcessor.from_pretrained("openai/whisper-base") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base") | |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="nl", task="transcribe") | |
sampling_rate = processor.feature_extractor.sampling_rate | |
def translate(audio): | |
input_features = processor(audio,sampling_rate=sampling_rate,return_tensors="pt").input_features | |
predicted_ids = model.generate(input_features,forced_decoder_ids=forced_decoder_ids) | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
return transcription | |
def synthesise(text): | |
print("text",text) | |
inputs = tokenizer_mms(text[0], return_tensors="pt") | |
input_ids = inputs["input_ids"] | |
with torch.no_grad(): | |
outputs = model_mms(input_ids) | |
speech = outputs["waveform"] | |
return speech | |
def speech_to_speech_translation(audio): | |
sampling_rate = 16000 | |
data_array,samplerate = librosa.load(audio) | |
data_16 = librosa.resample(data_array, orig_sr=samplerate, target_sr=sampling_rate) | |
translated_text = translate(data_16) | |
synthesised_speech = synthesise(translated_text) | |
print("max_range",max_range) | |
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16) | |
print("sampling_rate",sampling_rate) | |
print("synthesised_speech",synthesised_speech) | |
return sampling_rate, synthesised_speech.T | |
title = "Cascaded STST" | |
description = """ | |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's | |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech: | |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
examples=[["./example.wav"]], | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch() | |