File size: 8,463 Bytes
e8aa256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import torch
from PIL import Image
import cv2
import torchvision.transforms as T
import os 
import numpy as np
import torch.nn.functional as F
from dift_util import DIFT_Demo, SDFeaturizer
from torchvision.transforms import PILToTensor

from tqdm import tqdm


def load_dinov2():
    dinov2_vitl14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14').cuda()
    dinov2_vitl14.eval()
    return dinov2_vitl14

def infer_model(model, image):
    transform = T.Compose([
        T.Resize((196, 196)),
        T.ToTensor(),
        T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    ])
    image = transform(image).unsqueeze(0).cuda()
#     cls_token = model.forward_features(image)
    cls_token = model(image, is_training=False)
    return cls_token

def sort_frames(frame_name):
    return int(frame_name.split('.')[0])

def find_largest_inner_rectangle_coordinates(mask_gray):
    # 识别轮廓
#     contours, _ = cv2.findContours(mask_gray.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    
#     xx,yy,ww,hh = 0,0,0,0
#     contours_r = contours[0]
#     for contour in contours:
#         x, y, w, h = cv2.boundingRect(contour) 
#         if w*h > ww*hh:
#             xx,yy,ww,hh = x, y, w, h
#             contours_r = contour
            
            
    # 计算到轮廓的距离
#     raw_dist = np.empty(mask_gray.shape, dtype=np.float32)
#     for i in range(mask_gray.shape[0]):
#         for j in range(mask_gray.shape[1]):
#             raw_dist[i, j] = cv2.pointPolygonTest(contours_r, (j, i), True)
    
    refine_dist = cv2.distanceTransform(mask_gray.astype(np.uint8), cv2.DIST_L2, 5, cv2.DIST_LABEL_PIXEL)
    _, maxVal, _, maxLoc = cv2.minMaxLoc(refine_dist)
    radius = int(maxVal)
    
#     # 获取最大值即内接圆半径,中心点坐标
#     minVal, maxVal, _, maxDistPt = cv2.minMaxLoc(raw_dist)
#     minVal = abs(minVal)
#     maxVal = abs(maxVal)
    
    return maxLoc, radius


def pil_image_to_numpy(image, is_maks = False, index = 1):
    """Convert a PIL image to a NumPy array."""
    
    if is_maks:
        image = image.resize((256, 256))
#         image = (np.array(image)==index)*1
#         image = cv2.cvtColor(image.astype(np.uint8), cv2.COLOR_GRAY2RGB)
        return np.array(image)
    else:
        if image.mode != 'RGB':
            image = image.convert('RGB')
        image = image.resize((256, 256))
        return np.array(image)

def get_ID(images_list,masks_list,dinov2):
        
    ID_images = []


    image = images_list[0]
    mask = masks_list

        # 使用 findContours 函数找到轮廓
    try:
        contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        x, y, w, h = cv2.boundingRect(contours[0]) 

        mask = cv2.cvtColor(mask.astype(np.uint8), cv2.COLOR_GRAY2RGB)
        image = image * mask

        image = image[y:y+h,x:x+w]
    except:
        pass
        print("cv2.findContours error")

#         image = cv2.resize(image, (196, 196))

    image = Image.fromarray(image).convert('RGB')

    img_embedding = infer_model(dinov2, image)


    return img_embedding

def get_dift_ID(feature_map,mask):
        
#     feature_map = feature_map * 0
    
    new_feature = []
    non_zero_coordinates = np.column_stack(np.where(mask != 0))
    for coord in non_zero_coordinates:
#         feature_map[:, coord[0], coord[1]] = 1
        new_feature.append(feature_map[:, coord[0], coord[1]])
    
    stacked_tensor = torch.stack(new_feature, dim=0)
    # 在维度0上进行平均池化
    average_pooled_tensor = torch.mean(stacked_tensor, dim=0)

    return average_pooled_tensor


def extract_dift_feature(image, dift_model):
    if isinstance(image, Image.Image):
        image = image
    else:
        image = Image.open(image).convert('RGB')
           
    prompt = ''
    img_tensor = (PILToTensor()(image) / 255.0 - 0.5) * 2
    dift_feature = dift_model.forward(img_tensor, prompt=prompt, up_ft_index=3,ensemble_size=8)
    return dift_feature

dinov2 = load_dinov2()
dinov2.requires_grad_(False)


model_id = 'pretrained_models/chilloutmix'
dift_model = SDFeaturizer(sd_id=model_id)


# # 加载模型
# model = torch.load("/mmu-ocr/weijiawu/MovieDiffusion/ShowAnything/data/ref-youtube-vos/train/embedding/2cd01cf915/1.pth")
# print(model.shape)
# assert False

dataset_type = "ref-youtube-vos"


if dataset_type == "ref-youtube-vos":
    video_folder = "/mmu-ocr/weijiawu/MovieDiffusion/ShowAnything/data/ref-youtube-vos/train/JPEGImages"
    ann_folder = "/mmu-ocr/weijiawu/MovieDiffusion/ShowAnything/data/ref-youtube-vos/train/Annotations"
    save_p = "/mmu-ocr/weijiawu/MovieDiffusion/ShowAnything/data/ref-youtube-vos/train/embedding_SD_512_once"
else:
    video_folder = "/mmu-ocr/weijiawu/MovieDiffusion/ShowAnything/data/VIPSeg/imgs"
    ann_folder = "/mmu-ocr/weijiawu/MovieDiffusion/ShowAnything/data/VIPSeg/panomasks"
    save_p = "/mmu-ocr/weijiawu/MovieDiffusion/ShowAnything/data/VIPSeg/embedding_SD_512_once"

dataset_size = 512

dataset = [i for i in os.listdir(ann_folder)] 

for videoid in dataset:
    
    video_dir_1 = os.path.join(video_folder, videoid)
    ann_folder_1 = os.path.join(ann_folder, videoid)
    save_embedding = os.path.join(save_p, videoid)
    save_embedding_once = os.path.join(save_p, videoid+".pth")
    
#     if not os.path.exists(save_embedding):
#         print(save_embedding)
#         os.makedirs(save_embedding)
        
    image_files = sorted(os.listdir(video_dir_1), key=sort_frames)
    depth_files = sorted(os.listdir(ann_folder_1), key=sort_frames)

    #test
    keyframe_image = Image.open(os.path.join(video_dir_1, image_files[0])).convert('RGB')
    keyframe_image = keyframe_image.resize((dataset_size, dataset_size))
    keyframe_dift = extract_dift_feature(keyframe_image, dift_model=dift_model)
    
    # torch.Size([1, 320, 32, 32])
    mask = np.array(Image.open(os.path.join(ann_folder_1, depth_files[0])))
#     np.array(Image.open(os.path.join(ann_folder_1, df)))
#     mask = Image.open(os.path.join(ann_folder_1, depth_files[0])).convert('P')
    ids = [i for i in np.unique(mask)]    
    numpy_depth_images = np.array([pil_image_to_numpy(Image.open(os.path.join(ann_folder_1, df)),True,ids) for df in depth_files])
    
    ids_list = {}
    for index_mask, mask in tqdm(enumerate(numpy_depth_images)):
        ids_embedding = torch.ones((dataset_size, dataset_size, 320))

        # 判断文件是否存在
#         if os.path.exists(os.path.join(save_embedding, '{}.pth'.format(index_mask))) and index_mask!=0:
#             continue
        
        for index in ids:
            mask_array = (np.array(mask)==index)*1
            
            try:
                center_coordinate,_  = find_largest_inner_rectangle_coordinates(mask_array)
            except:
                continue
                print("find_largest_inner_rectangle_coordinates error")
            

            circle_img = np.zeros((dataset_size, dataset_size), np.float32)
            circle_mask = cv2.circle(circle_img, (center_coordinate[0],center_coordinate[1]), 20, 1, -1)
            
            
            # ID embedding
            if index_mask == 0:
                # diffusion feature
                mask_32 = cv2.resize(mask_array.astype(np.uint8),(int(dataset_size/8),int(dataset_size/8)))
                if len(np.column_stack(np.where(mask_32 != 0)))==0:
                    continue
                    
                id_feature = get_dift_ID(keyframe_dift[0],mask_32)
                ids_list[index] = id_feature
                
            else:
                try:
                    id_feature = ids_list[index]
                except:
                    print("index error")
                    continue
            
#             获取非零像素的坐标
#             non_zero_coordinates = np.column_stack(np.where(circle_mask != 0))
#             for coord in non_zero_coordinates:
#                 ids_embedding[coord[0], coord[1]] = id_feature
        
        torch.save(ids_list, save_embedding_once)
        
        # only extract the feature of the first frame
        break
        
#         ids_embedding = F.avg_pool3d(ids_embedding, kernel_size=(2, 1, 1), stride=(8, 1, 1))      

        ids_embedding = F.avg_pool1d(ids_embedding, kernel_size=2, stride=2)
        torch.save(ids_embedding, os.path.join(save_embedding, '{}.pth'.format(index_mask)))