File size: 6,846 Bytes
e8aa256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import imageio
import numpy as np
from typing import Union

import torch
import torchvision
import torch.distributed as dist

from safetensors import safe_open
from tqdm import tqdm
from einops import rearrange


def zero_rank_print(s):
    if (not dist.is_initialized()) and (dist.is_initialized() and dist.get_rank() == 0): print("### " + s)


def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
    videos = rearrange(videos, "b c t h w -> t b c h w")
    outputs = []
    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        outputs.append(x)

    os.makedirs(os.path.dirname(path), exist_ok=True)
    imageio.mimsave(path, outputs, fps=fps)


# DDIM Inversion
@torch.no_grad()
def init_prompt(prompt, pipeline):
    uncond_input = pipeline.tokenizer(
        [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
        return_tensors="pt"
    )
    uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
    text_input = pipeline.tokenizer(
        [prompt],
        padding="max_length",
        max_length=pipeline.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
    context = torch.cat([uncond_embeddings, text_embeddings])

    return context


def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
              sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
    timestep, next_timestep = min(
        timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
    alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
    alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
    beta_prod_t = 1 - alpha_prod_t
    next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
    next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
    next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
    return next_sample


def get_noise_pred_single(latents, t, context, unet):
    noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
    return noise_pred


@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
    context = init_prompt(prompt, pipeline)
    uncond_embeddings, cond_embeddings = context.chunk(2)
    all_latent = [latent]
    latent = latent.clone().detach()
    for i in tqdm(range(num_inv_steps)):
        t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
        noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
        latent = next_step(noise_pred, t, latent, ddim_scheduler)
        all_latent.append(latent)
    return all_latent


@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
    ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
    return ddim_latents
    

# def load_weights(
#     animation_pipeline,
#     # motion module
#     motion_module_path         = "",
#     motion_module_lora_configs = [],
#     # image layers
#     dreambooth_model_path = "",
#     lora_model_path       = "",
#     lora_alpha            = 0.8,
# ):
#     # 1.1 motion module
#     unet_state_dict = {}
#     if motion_module_path != "":
#         print(f"load motion module from {motion_module_path}")
#         motion_module_state_dict = torch.load(motion_module_path, map_location="cpu")
#         motion_module_state_dict = motion_module_state_dict["state_dict"] if "state_dict" in motion_module_state_dict else motion_module_state_dict
#         unet_state_dict.update({name.replace("module.", ""): param for name, param in motion_module_state_dict.items()})
    
#     missing, unexpected = animation_pipeline.unet.load_state_dict(unet_state_dict, strict=False)
#     assert len(unexpected) == 0
#     del unet_state_dict

#    # if dreambooth_model_path != "":
#    #     print(f"load dreambooth model from {dreambooth_model_path}")
#   #      if dreambooth_model_path.endswith(".safetensors"):
#   #          dreambooth_state_dict = {}
#   #          with safe_open(dreambooth_model_path, framework="pt", device="cpu") as f:
#    #             for key in f.keys():
#    #                 dreambooth_state_dict[key.replace("module.", "")] = f.get_tensor(key)
#    #     elif dreambooth_model_path.endswith(".ckpt"):
#    #         dreambooth_state_dict = torch.load(dreambooth_model_path, map_location="cpu")
#    #         dreambooth_state_dict = {k.replace("module.", ""): v for k, v in dreambooth_state_dict.items()}
            
#         # 1. vae
#     #    converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, animation_pipeline.vae.config)
#     #    animation_pipeline.vae.load_state_dict(converted_vae_checkpoint)
#         # 2. unet
#     #    converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, animation_pipeline.unet.config)
#     #    animation_pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False)
#         # 3. text_model
#      #   animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict)
#      #   del dreambooth_state_dict
        
#     if lora_model_path != "":
#         print(f"load lora model from {lora_model_path}")
#         assert lora_model_path.endswith(".safetensors")
#         lora_state_dict = {}
#         with safe_open(lora_model_path, framework="pt", device="cpu") as f:
#             for key in f.keys():
#                 lora_state_dict[key.replace("module.", "")] = f.get_tensor(key)
                
#         animation_pipeline = convert_lora(animation_pipeline, lora_state_dict, alpha=lora_alpha)
#         del lora_state_dict

#     for motion_module_lora_config in motion_module_lora_configs:
#         path, alpha = motion_module_lora_config["path"], motion_module_lora_config["alpha"]
#         print(f"load motion LoRA from {path}")

#         motion_lora_state_dict = torch.load(path, map_location="cpu")
#         motion_lora_state_dict = motion_lora_state_dict["state_dict"] if "state_dict" in motion_lora_state_dict else motion_lora_state_dict
#         motion_lora_state_dict = {k.replace("module.", ""): v for k, v in motion_lora_state_dict.items()}

#         animation_pipeline = convert_motion_lora_ckpt_to_diffusers(animation_pipeline, motion_lora_state_dict, alpha)

#     return animation_pipeline