|
from functools import partial |
|
from abc import abstractmethod |
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
import torch.nn.functional as F |
|
from lvdm.models.utils_diffusion import timestep_embedding |
|
from lvdm.common import checkpoint |
|
from lvdm.basics import ( |
|
zero_module, |
|
conv_nd, |
|
linear, |
|
avg_pool_nd, |
|
normalization |
|
) |
|
from lvdm.modules.attention import SpatialTransformer, TemporalTransformer |
|
|
|
|
|
class TimestepBlock(nn.Module): |
|
""" |
|
Any module where forward() takes timestep embeddings as a second argument. |
|
""" |
|
@abstractmethod |
|
def forward(self, x, emb): |
|
""" |
|
Apply the module to `x` given `emb` timestep embeddings. |
|
""" |
|
|
|
|
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): |
|
""" |
|
A sequential module that passes timestep embeddings to the children that |
|
support it as an extra input. |
|
""" |
|
|
|
def forward(self, x, emb, context=None, batch_size=None): |
|
for layer in self: |
|
if isinstance(layer, TimestepBlock): |
|
x = layer(x, emb, batch_size=batch_size) |
|
elif isinstance(layer, SpatialTransformer): |
|
x = layer(x, context) |
|
elif isinstance(layer, TemporalTransformer): |
|
x = rearrange(x, '(b f) c h w -> b c f h w', b=batch_size) |
|
x = layer(x, context) |
|
x = rearrange(x, 'b c f h w -> (b f) c h w') |
|
else: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
""" |
|
A downsampling layer with an optional convolution. |
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
downsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
stride = 2 if dims != 3 else (1, 2, 2) |
|
if use_conv: |
|
self.op = conv_nd( |
|
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding |
|
) |
|
else: |
|
assert self.channels == self.out_channels |
|
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
return self.op(x) |
|
|
|
|
|
class Upsample(nn.Module): |
|
""" |
|
An upsampling layer with an optional convolution. |
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
upsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
if use_conv: |
|
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
if self.dims == 3: |
|
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest') |
|
else: |
|
x = F.interpolate(x, scale_factor=2, mode='nearest') |
|
if self.use_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class ResBlock(TimestepBlock): |
|
""" |
|
A residual block that can optionally change the number of channels. |
|
:param channels: the number of input channels. |
|
:param emb_channels: the number of timestep embedding channels. |
|
:param dropout: the rate of dropout. |
|
:param out_channels: if specified, the number of out channels. |
|
:param use_conv: if True and out_channels is specified, use a spatial |
|
convolution instead of a smaller 1x1 convolution to change the |
|
channels in the skip connection. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param up: if True, use this block for upsampling. |
|
:param down: if True, use this block for downsampling. |
|
:param use_temporal_conv: if True, use the temporal convolution. |
|
:param use_image_dataset: if True, the temporal parameters will not be optimized. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
emb_channels, |
|
dropout, |
|
out_channels=None, |
|
use_scale_shift_norm=False, |
|
dims=2, |
|
use_checkpoint=False, |
|
use_conv=False, |
|
up=False, |
|
down=False, |
|
use_temporal_conv=False, |
|
tempspatial_aware=False |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.emb_channels = emb_channels |
|
self.dropout = dropout |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_checkpoint = use_checkpoint |
|
self.use_scale_shift_norm = use_scale_shift_norm |
|
self.use_temporal_conv = use_temporal_conv |
|
|
|
self.in_layers = nn.Sequential( |
|
normalization(channels), |
|
nn.SiLU(), |
|
conv_nd(dims, channels, self.out_channels, 3, padding=1), |
|
) |
|
|
|
self.updown = up or down |
|
|
|
if up: |
|
self.h_upd = Upsample(channels, False, dims) |
|
self.x_upd = Upsample(channels, False, dims) |
|
elif down: |
|
self.h_upd = Downsample(channels, False, dims) |
|
self.x_upd = Downsample(channels, False, dims) |
|
else: |
|
self.h_upd = self.x_upd = nn.Identity() |
|
|
|
self.emb_layers = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear( |
|
emb_channels, |
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels, |
|
), |
|
) |
|
self.out_layers = nn.Sequential( |
|
normalization(self.out_channels), |
|
nn.SiLU(), |
|
nn.Dropout(p=dropout), |
|
zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)), |
|
) |
|
|
|
if self.out_channels == channels: |
|
self.skip_connection = nn.Identity() |
|
elif use_conv: |
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1) |
|
else: |
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) |
|
|
|
if self.use_temporal_conv: |
|
self.temopral_conv = TemporalConvBlock( |
|
self.out_channels, |
|
self.out_channels, |
|
dropout=0.1, |
|
spatial_aware=tempspatial_aware |
|
) |
|
|
|
def forward(self, x, emb, batch_size=None): |
|
""" |
|
Apply the block to a Tensor, conditioned on a timestep embedding. |
|
:param x: an [N x C x ...] Tensor of features. |
|
:param emb: an [N x emb_channels] Tensor of timestep embeddings. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
input_tuple = (x, emb) |
|
if batch_size: |
|
forward_batchsize = partial(self._forward, batch_size=batch_size) |
|
return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint) |
|
return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint) |
|
|
|
def _forward(self, x, emb, batch_size=None): |
|
if self.updown: |
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] |
|
h = in_rest(x) |
|
h = self.h_upd(h) |
|
x = self.x_upd(x) |
|
h = in_conv(h) |
|
else: |
|
h = self.in_layers(x) |
|
emb_out = self.emb_layers(emb).type(h.dtype) |
|
while len(emb_out.shape) < len(h.shape): |
|
emb_out = emb_out[..., None] |
|
if self.use_scale_shift_norm: |
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] |
|
scale, shift = torch.chunk(emb_out, 2, dim=1) |
|
h = out_norm(h) * (1 + scale) + shift |
|
h = out_rest(h) |
|
else: |
|
h = h + emb_out |
|
h = self.out_layers(h) |
|
h = self.skip_connection(x) + h |
|
|
|
if self.use_temporal_conv and batch_size: |
|
h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size) |
|
h = self.temopral_conv(h) |
|
h = rearrange(h, 'b c t h w -> (b t) c h w') |
|
return h |
|
|
|
|
|
class TemporalConvBlock(nn.Module): |
|
""" |
|
Adapted from modelscope: https://github.com/modelscope/modelscope/blob/master/modelscope/models/multi_modal/video_synthesis/unet_sd.py |
|
""" |
|
def __init__(self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False): |
|
super(TemporalConvBlock, self).__init__() |
|
if out_channels is None: |
|
out_channels = in_channels |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
th_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 1) |
|
th_padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 0) |
|
tw_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 1, 3) |
|
tw_padding_shape = (1, 0, 0) if not spatial_aware else (1, 0, 1) |
|
|
|
|
|
self.conv1 = nn.Sequential( |
|
nn.GroupNorm(32, in_channels), nn.SiLU(), |
|
nn.Conv3d(in_channels, out_channels, th_kernel_shape, padding=th_padding_shape)) |
|
self.conv2 = nn.Sequential( |
|
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout), |
|
nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape)) |
|
self.conv3 = nn.Sequential( |
|
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout), |
|
nn.Conv3d(out_channels, in_channels, th_kernel_shape, padding=th_padding_shape)) |
|
self.conv4 = nn.Sequential( |
|
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout), |
|
nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape)) |
|
|
|
|
|
nn.init.zeros_(self.conv4[-1].weight) |
|
nn.init.zeros_(self.conv4[-1].bias) |
|
|
|
def forward(self, x): |
|
identity = x |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
x = self.conv3(x) |
|
x = self.conv4(x) |
|
|
|
return identity + x |
|
|
|
class UNetModel(nn.Module): |
|
""" |
|
The full UNet model with attention and timestep embedding. |
|
:param in_channels: in_channels in the input Tensor. |
|
:param model_channels: base channel count for the model. |
|
:param out_channels: channels in the output Tensor. |
|
:param num_res_blocks: number of residual blocks per downsample. |
|
:param attention_resolutions: a collection of downsample rates at which |
|
attention will take place. May be a set, list, or tuple. |
|
For example, if this contains 4, then at 4x downsampling, attention |
|
will be used. |
|
:param dropout: the dropout probability. |
|
:param channel_mult: channel multiplier for each level of the UNet. |
|
:param conv_resample: if True, use learned convolutions for upsampling and |
|
downsampling. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param num_classes: if specified (as an int), then this model will be |
|
class-conditional with `num_classes` classes. |
|
:param use_checkpoint: use gradient checkpointing to reduce memory usage. |
|
:param num_heads: the number of attention heads in each attention layer. |
|
:param num_heads_channels: if specified, ignore num_heads and instead use |
|
a fixed channel width per attention head. |
|
:param num_heads_upsample: works with num_heads to set a different number |
|
of heads for upsampling. Deprecated. |
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism. |
|
:param resblock_updown: use residual blocks for up/downsampling. |
|
:param use_new_attention_order: use a different attention pattern for potentially |
|
increased efficiency. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
model_channels, |
|
out_channels, |
|
num_res_blocks, |
|
attention_resolutions, |
|
dropout=0.0, |
|
channel_mult=(1, 2, 4, 8), |
|
conv_resample=True, |
|
dims=2, |
|
context_dim=None, |
|
use_scale_shift_norm=False, |
|
resblock_updown=False, |
|
num_heads=-1, |
|
num_head_channels=-1, |
|
transformer_depth=1, |
|
use_linear=False, |
|
use_checkpoint=False, |
|
temporal_conv=False, |
|
tempspatial_aware=False, |
|
temporal_attention=True, |
|
use_relative_position=True, |
|
use_causal_attention=False, |
|
temporal_length=None, |
|
use_fp16=False, |
|
addition_attention=False, |
|
temporal_selfatt_only=True, |
|
image_cross_attention=False, |
|
image_cross_attention_scale_learnable=False, |
|
default_fs=4, |
|
fs_condition=False, |
|
): |
|
super(UNetModel, self).__init__() |
|
if num_heads == -1: |
|
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' |
|
if num_head_channels == -1: |
|
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' |
|
|
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.out_channels = out_channels |
|
self.num_res_blocks = num_res_blocks |
|
self.attention_resolutions = attention_resolutions |
|
self.dropout = dropout |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.temporal_attention = temporal_attention |
|
time_embed_dim = model_channels * 4 |
|
self.use_checkpoint = use_checkpoint |
|
self.dtype = torch.float16 if use_fp16 else torch.float32 |
|
temporal_self_att_only = True |
|
self.addition_attention = addition_attention |
|
self.temporal_length = temporal_length |
|
self.image_cross_attention = image_cross_attention |
|
self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable |
|
self.default_fs = default_fs |
|
self.fs_condition = fs_condition |
|
|
|
|
|
self.time_embed = nn.Sequential( |
|
linear(model_channels, time_embed_dim), |
|
nn.SiLU(), |
|
linear(time_embed_dim, time_embed_dim), |
|
) |
|
if fs_condition: |
|
self.fps_embedding = nn.Sequential( |
|
linear(model_channels, time_embed_dim), |
|
nn.SiLU(), |
|
linear(time_embed_dim, time_embed_dim), |
|
) |
|
nn.init.zeros_(self.fps_embedding[-1].weight) |
|
nn.init.zeros_(self.fps_embedding[-1].bias) |
|
|
|
self.input_blocks = nn.ModuleList( |
|
[ |
|
TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1)) |
|
] |
|
) |
|
if self.addition_attention: |
|
self.init_attn=TimestepEmbedSequential( |
|
TemporalTransformer( |
|
model_channels, |
|
n_heads=8, |
|
d_head=num_head_channels, |
|
depth=transformer_depth, |
|
context_dim=context_dim, |
|
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only, |
|
causal_attention=False, relative_position=use_relative_position, |
|
temporal_length=temporal_length)) |
|
|
|
input_block_chans = [model_channels] |
|
ch = model_channels |
|
ds = 1 |
|
for level, mult in enumerate(channel_mult): |
|
for _ in range(num_res_blocks): |
|
layers = [ |
|
ResBlock(ch, time_embed_dim, dropout, |
|
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, |
|
use_temporal_conv=temporal_conv |
|
) |
|
] |
|
ch = mult * model_channels |
|
if ds in attention_resolutions: |
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
layers.append( |
|
SpatialTransformer(ch, num_heads, dim_head, |
|
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, |
|
use_checkpoint=use_checkpoint, disable_self_attn=False, |
|
video_length=temporal_length, image_cross_attention=self.image_cross_attention, |
|
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable, |
|
) |
|
) |
|
if self.temporal_attention: |
|
layers.append( |
|
TemporalTransformer(ch, num_heads, dim_head, |
|
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, |
|
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, |
|
causal_attention=use_causal_attention, relative_position=use_relative_position, |
|
temporal_length=temporal_length |
|
) |
|
) |
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
self.input_blocks.append( |
|
TimestepEmbedSequential( |
|
ResBlock(ch, time_embed_dim, dropout, |
|
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True |
|
) |
|
if resblock_updown |
|
else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch) |
|
) |
|
) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
ds *= 2 |
|
|
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
layers = [ |
|
ResBlock(ch, time_embed_dim, dropout, |
|
dims=dims, use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, |
|
use_temporal_conv=temporal_conv |
|
), |
|
SpatialTransformer(ch, num_heads, dim_head, |
|
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, |
|
use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length, |
|
image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable |
|
) |
|
] |
|
if self.temporal_attention: |
|
layers.append( |
|
TemporalTransformer(ch, num_heads, dim_head, |
|
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, |
|
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, |
|
causal_attention=use_causal_attention, relative_position=use_relative_position, |
|
temporal_length=temporal_length |
|
) |
|
) |
|
layers.append( |
|
ResBlock(ch, time_embed_dim, dropout, |
|
dims=dims, use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, |
|
use_temporal_conv=temporal_conv |
|
) |
|
) |
|
|
|
|
|
self.middle_block = TimestepEmbedSequential(*layers) |
|
|
|
|
|
self.output_blocks = nn.ModuleList([]) |
|
for level, mult in list(enumerate(channel_mult))[::-1]: |
|
for i in range(num_res_blocks + 1): |
|
ich = input_block_chans.pop() |
|
layers = [ |
|
ResBlock(ch + ich, time_embed_dim, dropout, |
|
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, |
|
use_temporal_conv=temporal_conv |
|
) |
|
] |
|
ch = model_channels * mult |
|
if ds in attention_resolutions: |
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
layers.append( |
|
SpatialTransformer(ch, num_heads, dim_head, |
|
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, |
|
use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length, |
|
image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable |
|
) |
|
) |
|
if self.temporal_attention: |
|
layers.append( |
|
TemporalTransformer(ch, num_heads, dim_head, |
|
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, |
|
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, |
|
causal_attention=use_causal_attention, relative_position=use_relative_position, |
|
temporal_length=temporal_length |
|
) |
|
) |
|
if level and i == num_res_blocks: |
|
out_ch = ch |
|
layers.append( |
|
ResBlock(ch, time_embed_dim, dropout, |
|
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
up=True |
|
) |
|
if resblock_updown |
|
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) |
|
) |
|
ds //= 2 |
|
self.output_blocks.append(TimestepEmbedSequential(*layers)) |
|
|
|
self.out = nn.Sequential( |
|
normalization(ch), |
|
nn.SiLU(), |
|
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), |
|
) |
|
|
|
def forward(self, x, timesteps, context=None, features_adapter=None, fs=None, **kwargs): |
|
b,_,t,_,_ = x.shape |
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).type(x.dtype) |
|
emb = self.time_embed(t_emb) |
|
|
|
|
|
|
|
_, l_context, _ = context.shape |
|
if l_context == 77 + t*16: |
|
context_text, context_img = context[:,:77,:], context[:,77:,:] |
|
context_text = context_text.repeat_interleave(repeats=t, dim=0) |
|
context_img = rearrange(context_img, 'b (t l) c -> (b t) l c', t=t) |
|
context = torch.cat([context_text, context_img], dim=1) |
|
else: |
|
context = context.repeat_interleave(repeats=t, dim=0) |
|
emb = emb.repeat_interleave(repeats=t, dim=0) |
|
|
|
|
|
x = rearrange(x, 'b c t h w -> (b t) c h w') |
|
|
|
|
|
if self.fs_condition: |
|
if fs is None: |
|
fs = torch.tensor( |
|
[self.default_fs] * b, dtype=torch.long, device=x.device) |
|
fs_emb = timestep_embedding(fs, self.model_channels, repeat_only=False).type(x.dtype) |
|
|
|
fs_embed = self.fps_embedding(fs_emb) |
|
fs_embed = fs_embed.repeat_interleave(repeats=t, dim=0) |
|
emb = emb + fs_embed |
|
|
|
h = x.type(self.dtype) |
|
adapter_idx = 0 |
|
hs = [] |
|
for id, module in enumerate(self.input_blocks): |
|
h = module(h, emb, context=context, batch_size=b) |
|
if id ==0 and self.addition_attention: |
|
h = self.init_attn(h, emb, context=context, batch_size=b) |
|
|
|
if ((id+1)%3 == 0) and features_adapter is not None: |
|
h = h + features_adapter[adapter_idx] |
|
adapter_idx += 1 |
|
hs.append(h) |
|
if features_adapter is not None: |
|
assert len(features_adapter)==adapter_idx, 'Wrong features_adapter' |
|
|
|
h = self.middle_block(h, emb, context=context, batch_size=b) |
|
for module in self.output_blocks: |
|
h = torch.cat([h, hs.pop()], dim=1) |
|
h = module(h, emb, context=context, batch_size=b) |
|
h = h.type(x.dtype) |
|
y = self.out(h) |
|
|
|
|
|
y = rearrange(y, '(b t) c h w -> b c t h w', b=b) |
|
return y |