Dragreal / lvdm /modules /networks /openaimodel3d.py
BasicNp's picture
Upload 71 files
5acb56c verified
raw
history blame
26 kB
from functools import partial
from abc import abstractmethod
import torch
import torch.nn as nn
from einops import rearrange
import torch.nn.functional as F
from lvdm.models.utils_diffusion import timestep_embedding
from lvdm.common import checkpoint
from lvdm.basics import (
zero_module,
conv_nd,
linear,
avg_pool_nd,
normalization
)
from lvdm.modules.attention import SpatialTransformer, TemporalTransformer
class TimestepBlock(nn.Module):
"""
Any module where forward() takes timestep embeddings as a second argument.
"""
@abstractmethod
def forward(self, x, emb):
"""
Apply the module to `x` given `emb` timestep embeddings.
"""
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
"""
A sequential module that passes timestep embeddings to the children that
support it as an extra input.
"""
def forward(self, x, emb, context=None, batch_size=None):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb, batch_size=batch_size)
elif isinstance(layer, SpatialTransformer):
x = layer(x, context)
elif isinstance(layer, TemporalTransformer):
x = rearrange(x, '(b f) c h w -> b c f h w', b=batch_size)
x = layer(x, context)
x = rearrange(x, 'b c f h w -> (b f) c h w')
else:
x = layer(x)
return x
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest')
else:
x = F.interpolate(x, scale_factor=2, mode='nearest')
if self.use_conv:
x = self.conv(x)
return x
class ResBlock(TimestepBlock):
"""
A residual block that can optionally change the number of channels.
:param channels: the number of input channels.
:param emb_channels: the number of timestep embedding channels.
:param dropout: the rate of dropout.
:param out_channels: if specified, the number of out channels.
:param use_conv: if True and out_channels is specified, use a spatial
convolution instead of a smaller 1x1 convolution to change the
channels in the skip connection.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param up: if True, use this block for upsampling.
:param down: if True, use this block for downsampling.
:param use_temporal_conv: if True, use the temporal convolution.
:param use_image_dataset: if True, the temporal parameters will not be optimized.
"""
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
use_scale_shift_norm=False,
dims=2,
use_checkpoint=False,
use_conv=False,
up=False,
down=False,
use_temporal_conv=False,
tempspatial_aware=False
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_checkpoint = use_checkpoint
self.use_scale_shift_norm = use_scale_shift_norm
self.use_temporal_conv = use_temporal_conv
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, 3, padding=1),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims)
self.x_upd = Upsample(channels, False, dims)
elif down:
self.h_upd = Downsample(channels, False, dims)
self.x_upd = Downsample(channels, False, dims)
else:
self.h_upd = self.x_upd = nn.Identity()
self.emb_layers = nn.Sequential(
nn.SiLU(),
nn.Linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
if self.use_temporal_conv:
self.temopral_conv = TemporalConvBlock(
self.out_channels,
self.out_channels,
dropout=0.1,
spatial_aware=tempspatial_aware
)
def forward(self, x, emb, batch_size=None):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
input_tuple = (x, emb)
if batch_size:
forward_batchsize = partial(self._forward, batch_size=batch_size)
return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint)
return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint)
def _forward(self, x, emb, batch_size=None):
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = torch.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
h = self.skip_connection(x) + h
if self.use_temporal_conv and batch_size:
h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size)
h = self.temopral_conv(h)
h = rearrange(h, 'b c t h w -> (b t) c h w')
return h
class TemporalConvBlock(nn.Module):
"""
Adapted from modelscope: https://github.com/modelscope/modelscope/blob/master/modelscope/models/multi_modal/video_synthesis/unet_sd.py
"""
def __init__(self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False):
super(TemporalConvBlock, self).__init__()
if out_channels is None:
out_channels = in_channels
self.in_channels = in_channels
self.out_channels = out_channels
th_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 1)
th_padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 0)
tw_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 1, 3)
tw_padding_shape = (1, 0, 0) if not spatial_aware else (1, 0, 1)
# conv layers
self.conv1 = nn.Sequential(
nn.GroupNorm(32, in_channels), nn.SiLU(),
nn.Conv3d(in_channels, out_channels, th_kernel_shape, padding=th_padding_shape))
self.conv2 = nn.Sequential(
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape))
self.conv3 = nn.Sequential(
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
nn.Conv3d(out_channels, in_channels, th_kernel_shape, padding=th_padding_shape))
self.conv4 = nn.Sequential(
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape))
# zero out the last layer params,so the conv block is identity
nn.init.zeros_(self.conv4[-1].weight)
nn.init.zeros_(self.conv4[-1].bias)
def forward(self, x):
identity = x
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
return identity + x
class UNetModel(nn.Module):
"""
The full UNet model with attention and timestep embedding.
:param in_channels: in_channels in the input Tensor.
:param model_channels: base channel count for the model.
:param out_channels: channels in the output Tensor.
:param num_res_blocks: number of residual blocks per downsample.
:param attention_resolutions: a collection of downsample rates at which
attention will take place. May be a set, list, or tuple.
For example, if this contains 4, then at 4x downsampling, attention
will be used.
:param dropout: the dropout probability.
:param channel_mult: channel multiplier for each level of the UNet.
:param conv_resample: if True, use learned convolutions for upsampling and
downsampling.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param num_classes: if specified (as an int), then this model will be
class-conditional with `num_classes` classes.
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
:param num_heads: the number of attention heads in each attention layer.
:param num_heads_channels: if specified, ignore num_heads and instead use
a fixed channel width per attention head.
:param num_heads_upsample: works with num_heads to set a different number
of heads for upsampling. Deprecated.
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
:param resblock_updown: use residual blocks for up/downsampling.
:param use_new_attention_order: use a different attention pattern for potentially
increased efficiency.
"""
def __init__(self,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0.0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
context_dim=None,
use_scale_shift_norm=False,
resblock_updown=False,
num_heads=-1,
num_head_channels=-1,
transformer_depth=1,
use_linear=False,
use_checkpoint=False,
temporal_conv=False,
tempspatial_aware=False,
temporal_attention=True,
use_relative_position=True,
use_causal_attention=False,
temporal_length=None,
use_fp16=False,
addition_attention=False,
temporal_selfatt_only=True,
image_cross_attention=False,
image_cross_attention_scale_learnable=False,
default_fs=4,
fs_condition=False,
):
super(UNetModel, self).__init__()
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.num_res_blocks = num_res_blocks
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.temporal_attention = temporal_attention
time_embed_dim = model_channels * 4
self.use_checkpoint = use_checkpoint
self.dtype = torch.float16 if use_fp16 else torch.float32
temporal_self_att_only = True
self.addition_attention = addition_attention
self.temporal_length = temporal_length
self.image_cross_attention = image_cross_attention
self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable
self.default_fs = default_fs
self.fs_condition = fs_condition
## Time embedding blocks
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
if fs_condition:
self.fps_embedding = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
nn.init.zeros_(self.fps_embedding[-1].weight)
nn.init.zeros_(self.fps_embedding[-1].bias)
## Input Block
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))
]
)
if self.addition_attention:
self.init_attn=TimestepEmbedSequential(
TemporalTransformer(
model_channels,
n_heads=8,
d_head=num_head_channels,
depth=transformer_depth,
context_dim=context_dim,
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
causal_attention=False, relative_position=use_relative_position,
temporal_length=temporal_length))
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for _ in range(num_res_blocks):
layers = [
ResBlock(ch, time_embed_dim, dropout,
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
layers.append(
SpatialTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, disable_self_attn=False,
video_length=temporal_length, image_cross_attention=self.image_cross_attention,
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable,
)
)
if self.temporal_attention:
layers.append(
TemporalTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
causal_attention=use_causal_attention, relative_position=use_relative_position,
temporal_length=temporal_length
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(ch, time_embed_dim, dropout,
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True
)
if resblock_updown
else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
layers = [
ResBlock(ch, time_embed_dim, dropout,
dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv
),
SpatialTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length,
image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable
)
]
if self.temporal_attention:
layers.append(
TemporalTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
causal_attention=use_causal_attention, relative_position=use_relative_position,
temporal_length=temporal_length
)
)
layers.append(
ResBlock(ch, time_embed_dim, dropout,
dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv
)
)
## Middle Block
self.middle_block = TimestepEmbedSequential(*layers)
## Output Block
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(num_res_blocks + 1):
ich = input_block_chans.pop()
layers = [
ResBlock(ch + ich, time_embed_dim, dropout,
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv
)
]
ch = model_channels * mult
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
layers.append(
SpatialTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length,
image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable
)
)
if self.temporal_attention:
layers.append(
TemporalTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
causal_attention=use_causal_attention, relative_position=use_relative_position,
temporal_length=temporal_length
)
)
if level and i == num_res_blocks:
out_ch = ch
layers.append(
ResBlock(ch, time_embed_dim, dropout,
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True
)
if resblock_updown
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
ds //= 2
self.output_blocks.append(TimestepEmbedSequential(*layers))
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
)
def forward(self, x, timesteps, context=None, features_adapter=None, fs=None, **kwargs):
b,_,t,_,_ = x.shape
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).type(x.dtype)
emb = self.time_embed(t_emb)
## repeat t times for context [(b t) 77 768] & time embedding
## check if we use per-frame image conditioning
_, l_context, _ = context.shape
if l_context == 77 + t*16: ## !!! HARD CODE here
context_text, context_img = context[:,:77,:], context[:,77:,:]
context_text = context_text.repeat_interleave(repeats=t, dim=0)
context_img = rearrange(context_img, 'b (t l) c -> (b t) l c', t=t)
context = torch.cat([context_text, context_img], dim=1)
else:
context = context.repeat_interleave(repeats=t, dim=0)
emb = emb.repeat_interleave(repeats=t, dim=0)
## always in shape (b t) c h w, except for temporal layer
x = rearrange(x, 'b c t h w -> (b t) c h w')
## combine emb
if self.fs_condition:
if fs is None:
fs = torch.tensor(
[self.default_fs] * b, dtype=torch.long, device=x.device)
fs_emb = timestep_embedding(fs, self.model_channels, repeat_only=False).type(x.dtype)
fs_embed = self.fps_embedding(fs_emb)
fs_embed = fs_embed.repeat_interleave(repeats=t, dim=0)
emb = emb + fs_embed
h = x.type(self.dtype)
adapter_idx = 0
hs = []
for id, module in enumerate(self.input_blocks):
h = module(h, emb, context=context, batch_size=b)
if id ==0 and self.addition_attention:
h = self.init_attn(h, emb, context=context, batch_size=b)
## plug-in adapter features
if ((id+1)%3 == 0) and features_adapter is not None:
h = h + features_adapter[adapter_idx]
adapter_idx += 1
hs.append(h)
if features_adapter is not None:
assert len(features_adapter)==adapter_idx, 'Wrong features_adapter'
h = self.middle_block(h, emb, context=context, batch_size=b)
for module in self.output_blocks:
h = torch.cat([h, hs.pop()], dim=1)
h = module(h, emb, context=context, batch_size=b)
h = h.type(x.dtype)
y = self.out(h)
# reshape back to (b c t h w)
y = rearrange(y, '(b t) c h w -> b c t h w', b=b)
return y