|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from ..utils import USE_PEFT_BACKEND |
|
from ..utils.torch_utils import maybe_allow_in_graph |
|
from .activations import GEGLU, GELU, ApproximateGELU |
|
from .attention_processor import Attention |
|
from .embeddings import SinusoidalPositionalEmbedding |
|
from .lora import LoRACompatibleLinear |
|
from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm |
|
|
|
|
|
def _chunked_feed_forward( |
|
ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None |
|
): |
|
|
|
if hidden_states.shape[chunk_dim] % chunk_size != 0: |
|
raise ValueError( |
|
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." |
|
) |
|
|
|
num_chunks = hidden_states.shape[chunk_dim] // chunk_size |
|
if lora_scale is None: |
|
ff_output = torch.cat( |
|
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], |
|
dim=chunk_dim, |
|
) |
|
else: |
|
|
|
ff_output = torch.cat( |
|
[ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], |
|
dim=chunk_dim, |
|
) |
|
|
|
return ff_output |
|
|
|
|
|
@maybe_allow_in_graph |
|
class GatedSelfAttentionDense(nn.Module): |
|
r""" |
|
A gated self-attention dense layer that combines visual features and object features. |
|
|
|
Parameters: |
|
query_dim (`int`): The number of channels in the query. |
|
context_dim (`int`): The number of channels in the context. |
|
n_heads (`int`): The number of heads to use for attention. |
|
d_head (`int`): The number of channels in each head. |
|
""" |
|
|
|
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): |
|
super().__init__() |
|
|
|
|
|
self.linear = nn.Linear(context_dim, query_dim) |
|
|
|
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) |
|
self.ff = FeedForward(query_dim, activation_fn="geglu") |
|
|
|
self.norm1 = nn.LayerNorm(query_dim) |
|
self.norm2 = nn.LayerNorm(query_dim) |
|
|
|
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) |
|
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) |
|
|
|
self.enabled = True |
|
|
|
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: |
|
if not self.enabled: |
|
return x |
|
|
|
n_visual = x.shape[1] |
|
objs = self.linear(objs) |
|
|
|
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] |
|
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) |
|
|
|
return x |
|
|
|
|
|
@maybe_allow_in_graph |
|
class BasicTransformerBlock(nn.Module): |
|
r""" |
|
A basic Transformer block. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm (: |
|
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. |
|
attention_bias (: |
|
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. |
|
only_cross_attention (`bool`, *optional*): |
|
Whether to use only cross-attention layers. In this case two cross attention layers are used. |
|
double_self_attention (`bool`, *optional*): |
|
Whether to use two self-attention layers. In this case no cross attention layers are used. |
|
upcast_attention (`bool`, *optional*): |
|
Whether to upcast the attention computation to float32. This is useful for mixed precision training. |
|
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): |
|
Whether to use learnable elementwise affine parameters for normalization. |
|
norm_type (`str`, *optional*, defaults to `"layer_norm"`): |
|
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. |
|
final_dropout (`bool` *optional*, defaults to False): |
|
Whether to apply a final dropout after the last feed-forward layer. |
|
attention_type (`str`, *optional*, defaults to `"default"`): |
|
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. |
|
positional_embeddings (`str`, *optional*, defaults to `None`): |
|
The type of positional embeddings to apply to. |
|
num_positional_embeddings (`int`, *optional*, defaults to `None`): |
|
The maximum number of positional embeddings to apply. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_elementwise_affine: bool = True, |
|
norm_type: str = "layer_norm", |
|
norm_eps: float = 1e-5, |
|
final_dropout: bool = False, |
|
attention_type: str = "default", |
|
positional_embeddings: Optional[str] = None, |
|
num_positional_embeddings: Optional[int] = None, |
|
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None, |
|
ada_norm_bias: Optional[int] = None, |
|
ff_inner_dim: Optional[int] = None, |
|
ff_bias: bool = True, |
|
attention_out_bias: bool = True, |
|
): |
|
super().__init__() |
|
self.only_cross_attention = only_cross_attention |
|
|
|
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" |
|
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" |
|
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" |
|
self.use_layer_norm = norm_type == "layer_norm" |
|
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous" |
|
|
|
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: |
|
raise ValueError( |
|
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" |
|
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." |
|
) |
|
|
|
if positional_embeddings and (num_positional_embeddings is None): |
|
raise ValueError( |
|
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." |
|
) |
|
|
|
if positional_embeddings == "sinusoidal": |
|
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) |
|
else: |
|
self.pos_embed = None |
|
|
|
|
|
|
|
if self.use_ada_layer_norm: |
|
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) |
|
elif self.use_ada_layer_norm_zero: |
|
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) |
|
elif self.use_ada_layer_norm_continuous: |
|
self.norm1 = AdaLayerNormContinuous( |
|
dim, |
|
ada_norm_continous_conditioning_embedding_dim, |
|
norm_elementwise_affine, |
|
norm_eps, |
|
ada_norm_bias, |
|
"rms_norm", |
|
) |
|
else: |
|
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) |
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=cross_attention_dim if only_cross_attention else None, |
|
upcast_attention=upcast_attention, |
|
out_bias=attention_out_bias, |
|
) |
|
|
|
|
|
if cross_attention_dim is not None or double_self_attention: |
|
|
|
|
|
|
|
if self.use_ada_layer_norm: |
|
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) |
|
elif self.use_ada_layer_norm_continuous: |
|
self.norm2 = AdaLayerNormContinuous( |
|
dim, |
|
ada_norm_continous_conditioning_embedding_dim, |
|
norm_elementwise_affine, |
|
norm_eps, |
|
ada_norm_bias, |
|
"rms_norm", |
|
) |
|
else: |
|
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) |
|
|
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim if not double_self_attention else None, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
out_bias=attention_out_bias, |
|
) |
|
else: |
|
self.norm2 = None |
|
self.attn2 = None |
|
|
|
|
|
if self.use_ada_layer_norm_continuous: |
|
self.norm3 = AdaLayerNormContinuous( |
|
dim, |
|
ada_norm_continous_conditioning_embedding_dim, |
|
norm_elementwise_affine, |
|
norm_eps, |
|
ada_norm_bias, |
|
"layer_norm", |
|
) |
|
elif not self.use_ada_layer_norm_single: |
|
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) |
|
|
|
self.ff = FeedForward( |
|
dim, |
|
dropout=dropout, |
|
activation_fn=activation_fn, |
|
final_dropout=final_dropout, |
|
inner_dim=ff_inner_dim, |
|
bias=ff_bias, |
|
) |
|
|
|
|
|
if attention_type == "gated" or attention_type == "gated-text-image": |
|
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) |
|
|
|
|
|
if self.use_ada_layer_norm_single: |
|
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) |
|
|
|
|
|
self._chunk_size = None |
|
self._chunk_dim = 0 |
|
|
|
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): |
|
|
|
self._chunk_size = chunk_size |
|
self._chunk_dim = dim |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
) -> torch.FloatTensor: |
|
|
|
|
|
batch_size = hidden_states.shape[0] |
|
|
|
if self.use_ada_layer_norm: |
|
norm_hidden_states = self.norm1(hidden_states, timestep) |
|
elif self.use_ada_layer_norm_zero: |
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( |
|
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
elif self.use_layer_norm: |
|
norm_hidden_states = self.norm1(hidden_states) |
|
elif self.use_ada_layer_norm_continuous: |
|
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"]) |
|
elif self.use_ada_layer_norm_single: |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) |
|
).chunk(6, dim=1) |
|
norm_hidden_states = self.norm1(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa |
|
norm_hidden_states = norm_hidden_states.squeeze(1) |
|
else: |
|
raise ValueError("Incorrect norm used") |
|
|
|
if self.pos_embed is not None: |
|
norm_hidden_states = self.pos_embed(norm_hidden_states) |
|
|
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 |
|
|
|
|
|
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} |
|
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) |
|
|
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
if self.use_ada_layer_norm_zero: |
|
attn_output = gate_msa.unsqueeze(1) * attn_output |
|
elif self.use_ada_layer_norm_single: |
|
attn_output = gate_msa * attn_output |
|
|
|
hidden_states = attn_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
|
|
if gligen_kwargs is not None: |
|
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) |
|
|
|
|
|
if self.attn2 is not None: |
|
if self.use_ada_layer_norm: |
|
norm_hidden_states = self.norm2(hidden_states, timestep) |
|
elif self.use_ada_layer_norm_zero or self.use_layer_norm: |
|
norm_hidden_states = self.norm2(hidden_states) |
|
elif self.use_ada_layer_norm_single: |
|
|
|
|
|
norm_hidden_states = hidden_states |
|
elif self.use_ada_layer_norm_continuous: |
|
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"]) |
|
else: |
|
raise ValueError("Incorrect norm") |
|
|
|
if self.pos_embed is not None and self.use_ada_layer_norm_single is False: |
|
norm_hidden_states = self.pos_embed(norm_hidden_states) |
|
|
|
attn_output = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
if self.use_ada_layer_norm_continuous: |
|
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"]) |
|
elif not self.use_ada_layer_norm_single: |
|
norm_hidden_states = self.norm3(hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] |
|
|
|
if self.use_ada_layer_norm_single: |
|
norm_hidden_states = self.norm2(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp |
|
|
|
if self._chunk_size is not None: |
|
|
|
ff_output = _chunked_feed_forward( |
|
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale |
|
) |
|
else: |
|
ff_output = self.ff(norm_hidden_states, scale=lora_scale) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
ff_output = gate_mlp.unsqueeze(1) * ff_output |
|
elif self.use_ada_layer_norm_single: |
|
ff_output = gate_mlp * ff_output |
|
|
|
hidden_states = ff_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
return hidden_states |
|
|
|
|
|
@maybe_allow_in_graph |
|
class TemporalBasicTransformerBlock(nn.Module): |
|
r""" |
|
A basic Transformer block for video like data. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
time_mix_inner_dim (`int`): The number of channels for temporal attention. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
time_mix_inner_dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
cross_attention_dim: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.is_res = dim == time_mix_inner_dim |
|
|
|
self.norm_in = nn.LayerNorm(dim) |
|
|
|
|
|
|
|
self.norm_in = nn.LayerNorm(dim) |
|
self.ff_in = FeedForward( |
|
dim, |
|
dim_out=time_mix_inner_dim, |
|
activation_fn="geglu", |
|
) |
|
|
|
self.norm1 = nn.LayerNorm(time_mix_inner_dim) |
|
self.attn1 = Attention( |
|
query_dim=time_mix_inner_dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
cross_attention_dim=None, |
|
) |
|
|
|
|
|
if cross_attention_dim is not None: |
|
|
|
|
|
|
|
self.norm2 = nn.LayerNorm(time_mix_inner_dim) |
|
self.attn2 = Attention( |
|
query_dim=time_mix_inner_dim, |
|
cross_attention_dim=cross_attention_dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
) |
|
else: |
|
self.norm2 = None |
|
self.attn2 = None |
|
|
|
|
|
self.norm3 = nn.LayerNorm(time_mix_inner_dim) |
|
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu") |
|
|
|
|
|
self._chunk_size = None |
|
self._chunk_dim = None |
|
|
|
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs): |
|
|
|
self._chunk_size = chunk_size |
|
|
|
self._chunk_dim = 1 |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
num_frames: int, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
|
|
|
|
batch_size = hidden_states.shape[0] |
|
|
|
batch_frames, seq_length, channels = hidden_states.shape |
|
batch_size = batch_frames // num_frames |
|
|
|
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels) |
|
hidden_states = hidden_states.permute(0, 2, 1, 3) |
|
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels) |
|
|
|
residual = hidden_states |
|
hidden_states = self.norm_in(hidden_states) |
|
|
|
if self._chunk_size is not None: |
|
hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size) |
|
else: |
|
hidden_states = self.ff_in(hidden_states) |
|
|
|
if self.is_res: |
|
hidden_states = hidden_states + residual |
|
|
|
norm_hidden_states = self.norm1(hidden_states) |
|
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
if self.attn2 is not None: |
|
norm_hidden_states = self.norm2(hidden_states) |
|
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm3(hidden_states) |
|
|
|
if self._chunk_size is not None: |
|
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) |
|
else: |
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
if self.is_res: |
|
hidden_states = ff_output + hidden_states |
|
else: |
|
hidden_states = ff_output |
|
|
|
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels) |
|
hidden_states = hidden_states.permute(0, 2, 1, 3) |
|
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels) |
|
|
|
return hidden_states |
|
|
|
|
|
class SkipFFTransformerBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
kv_input_dim: int, |
|
kv_input_dim_proj_use_bias: bool, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
attention_out_bias: bool = True, |
|
): |
|
super().__init__() |
|
if kv_input_dim != dim: |
|
self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias) |
|
else: |
|
self.kv_mapper = None |
|
|
|
self.norm1 = RMSNorm(dim, 1e-06) |
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=cross_attention_dim, |
|
out_bias=attention_out_bias, |
|
) |
|
|
|
self.norm2 = RMSNorm(dim, 1e-06) |
|
|
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
out_bias=attention_out_bias, |
|
) |
|
|
|
def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs): |
|
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} |
|
|
|
if self.kv_mapper is not None: |
|
encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states)) |
|
|
|
norm_hidden_states = self.norm1(hidden_states) |
|
|
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
hidden_states = attn_output + hidden_states |
|
|
|
norm_hidden_states = self.norm2(hidden_states) |
|
|
|
attn_output = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
hidden_states = attn_output + hidden_states |
|
|
|
return hidden_states |
|
|
|
|
|
class FeedForward(nn.Module): |
|
r""" |
|
A feed-forward layer. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input. |
|
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. |
|
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. |
|
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: Optional[int] = None, |
|
mult: int = 4, |
|
dropout: float = 0.0, |
|
activation_fn: str = "geglu", |
|
final_dropout: bool = False, |
|
inner_dim=None, |
|
bias: bool = True, |
|
): |
|
super().__init__() |
|
if inner_dim is None: |
|
inner_dim = int(dim * mult) |
|
dim_out = dim_out if dim_out is not None else dim |
|
linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear |
|
|
|
if activation_fn == "gelu": |
|
act_fn = GELU(dim, inner_dim, bias=bias) |
|
if activation_fn == "gelu-approximate": |
|
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) |
|
elif activation_fn == "geglu": |
|
act_fn = GEGLU(dim, inner_dim, bias=bias) |
|
elif activation_fn == "geglu-approximate": |
|
act_fn = ApproximateGELU(dim, inner_dim, bias=bias) |
|
|
|
self.net = nn.ModuleList([]) |
|
|
|
self.net.append(act_fn) |
|
|
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
self.net.append(linear_cls(inner_dim, dim_out, bias=bias)) |
|
|
|
if final_dropout: |
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor: |
|
compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear) |
|
for module in self.net: |
|
if isinstance(module, compatible_cls): |
|
hidden_states = module(hidden_states, scale) |
|
else: |
|
hidden_states = module(hidden_states) |
|
return hidden_states |
|
|