|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config |
|
from ...loaders import FromOriginalVAEMixin |
|
from ...utils import is_torch_version |
|
from ...utils.accelerate_utils import apply_forward_hook |
|
from ..attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor |
|
from ..modeling_outputs import AutoencoderKLOutput |
|
from ..modeling_utils import ModelMixin |
|
from ..unet_3d_blocks import MidBlockTemporalDecoder, UpBlockTemporalDecoder |
|
from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder |
|
|
|
|
|
class TemporalDecoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int = 4, |
|
out_channels: int = 3, |
|
block_out_channels: Tuple[int] = (128, 256, 512, 512), |
|
layers_per_block: int = 2, |
|
): |
|
super().__init__() |
|
self.layers_per_block = layers_per_block |
|
|
|
self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1) |
|
self.mid_block = MidBlockTemporalDecoder( |
|
num_layers=self.layers_per_block, |
|
in_channels=block_out_channels[-1], |
|
out_channels=block_out_channels[-1], |
|
attention_head_dim=block_out_channels[-1], |
|
) |
|
|
|
|
|
self.up_blocks = nn.ModuleList([]) |
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
output_channel = reversed_block_out_channels[0] |
|
for i in range(len(block_out_channels)): |
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
|
|
is_final_block = i == len(block_out_channels) - 1 |
|
up_block = UpBlockTemporalDecoder( |
|
num_layers=self.layers_per_block + 1, |
|
in_channels=prev_output_channel, |
|
out_channels=output_channel, |
|
add_upsample=not is_final_block, |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-6) |
|
|
|
self.conv_act = nn.SiLU() |
|
self.conv_out = torch.nn.Conv2d( |
|
in_channels=block_out_channels[0], |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
padding=1, |
|
) |
|
|
|
conv_out_kernel_size = (3, 1, 1) |
|
padding = [int(k // 2) for k in conv_out_kernel_size] |
|
self.time_conv_out = torch.nn.Conv3d( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=conv_out_kernel_size, |
|
padding=padding, |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
image_only_indicator: torch.FloatTensor, |
|
num_frames: int = 1, |
|
) -> torch.FloatTensor: |
|
r"""The forward method of the `Decoder` class.""" |
|
|
|
sample = self.conv_in(sample) |
|
|
|
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
|
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.mid_block), |
|
sample, |
|
image_only_indicator, |
|
use_reentrant=False, |
|
) |
|
sample = sample.to(upscale_dtype) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(up_block), |
|
sample, |
|
image_only_indicator, |
|
use_reentrant=False, |
|
) |
|
else: |
|
|
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.mid_block), |
|
sample, |
|
image_only_indicator, |
|
) |
|
sample = sample.to(upscale_dtype) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(up_block), |
|
sample, |
|
image_only_indicator, |
|
) |
|
else: |
|
|
|
sample = self.mid_block(sample, image_only_indicator=image_only_indicator) |
|
sample = sample.to(upscale_dtype) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
sample = up_block(sample, image_only_indicator=image_only_indicator) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
batch_frames, channels, height, width = sample.shape |
|
batch_size = batch_frames // num_frames |
|
sample = sample[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4) |
|
sample = self.time_conv_out(sample) |
|
|
|
sample = sample.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width) |
|
|
|
return sample |
|
|
|
|
|
class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin, FromOriginalVAEMixin): |
|
r""" |
|
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented |
|
for all models (such as downloading or saving). |
|
|
|
Parameters: |
|
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. |
|
out_channels (int, *optional*, defaults to 3): Number of channels in the output. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): |
|
Tuple of downsample block types. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): |
|
Tuple of block output channels. |
|
layers_per_block: (`int`, *optional*, defaults to 1): Number of layers per block. |
|
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space. |
|
sample_size (`int`, *optional*, defaults to `32`): Sample input size. |
|
scaling_factor (`float`, *optional*, defaults to 0.18215): |
|
The component-wise standard deviation of the trained latent space computed using the first batch of the |
|
training set. This is used to scale the latent space to have unit variance when training the diffusion |
|
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the |
|
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 |
|
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image |
|
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. |
|
force_upcast (`bool`, *optional*, default to `True`): |
|
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE |
|
can be fine-tuned / trained to a lower range without loosing too much precision in which case |
|
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
down_block_types: Tuple[str] = ("DownEncoderBlock2D",), |
|
block_out_channels: Tuple[int] = (64,), |
|
layers_per_block: int = 1, |
|
latent_channels: int = 4, |
|
sample_size: int = 32, |
|
scaling_factor: float = 0.18215, |
|
force_upcast: float = True, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.encoder = Encoder( |
|
in_channels=in_channels, |
|
out_channels=latent_channels, |
|
down_block_types=down_block_types, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
double_z=True, |
|
) |
|
|
|
|
|
self.decoder = TemporalDecoder( |
|
in_channels=latent_channels, |
|
out_channels=out_channels, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
) |
|
|
|
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) |
|
|
|
sample_size = ( |
|
self.config.sample_size[0] |
|
if isinstance(self.config.sample_size, (list, tuple)) |
|
else self.config.sample_size |
|
) |
|
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) |
|
self.tile_overlap_factor = 0.25 |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, (Encoder, TemporalDecoder)): |
|
module.gradient_checkpointing = value |
|
|
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attn_processor( |
|
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False |
|
): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor, _remove_lora=_remove_lora) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnProcessor() |
|
else: |
|
raise ValueError( |
|
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" |
|
) |
|
|
|
self.set_attn_processor(processor, _remove_lora=True) |
|
|
|
@apply_forward_hook |
|
def encode( |
|
self, x: torch.FloatTensor, return_dict: bool = True |
|
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: |
|
""" |
|
Encode a batch of images into latents. |
|
|
|
Args: |
|
x (`torch.FloatTensor`): Input batch of images. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
The latent representations of the encoded images. If `return_dict` is True, a |
|
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. |
|
""" |
|
h = self.encoder(x) |
|
moments = self.quant_conv(h) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
|
|
if not return_dict: |
|
return (posterior,) |
|
|
|
return AutoencoderKLOutput(latent_dist=posterior) |
|
|
|
@apply_forward_hook |
|
def decode( |
|
self, |
|
z: torch.FloatTensor, |
|
num_frames: int, |
|
return_dict: bool = True, |
|
) -> Union[DecoderOutput, torch.FloatTensor]: |
|
""" |
|
Decode a batch of images. |
|
|
|
Args: |
|
z (`torch.FloatTensor`): Input batch of latent vectors. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.vae.DecoderOutput`] or `tuple`: |
|
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is |
|
returned. |
|
|
|
""" |
|
batch_size = z.shape[0] // num_frames |
|
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=z.dtype, device=z.device) |
|
decoded = self.decoder(z, num_frames=num_frames, image_only_indicator=image_only_indicator) |
|
|
|
if not return_dict: |
|
return (decoded,) |
|
|
|
return DecoderOutput(sample=decoded) |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
sample_posterior: bool = False, |
|
return_dict: bool = True, |
|
generator: Optional[torch.Generator] = None, |
|
num_frames: int = 1, |
|
) -> Union[DecoderOutput, torch.FloatTensor]: |
|
r""" |
|
Args: |
|
sample (`torch.FloatTensor`): Input sample. |
|
sample_posterior (`bool`, *optional*, defaults to `False`): |
|
Whether to sample from the posterior. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. |
|
""" |
|
x = sample |
|
posterior = self.encode(x).latent_dist |
|
if sample_posterior: |
|
z = posterior.sample(generator=generator) |
|
else: |
|
z = posterior.mode() |
|
|
|
dec = self.decode(z, num_frames=num_frames).sample |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|