|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config |
|
from ...schedulers import ConsistencyDecoderScheduler |
|
from ...utils import BaseOutput |
|
from ...utils.accelerate_utils import apply_forward_hook |
|
from ...utils.torch_utils import randn_tensor |
|
from ..attention_processor import ( |
|
ADDED_KV_ATTENTION_PROCESSORS, |
|
CROSS_ATTENTION_PROCESSORS, |
|
AttentionProcessor, |
|
AttnAddedKVProcessor, |
|
AttnProcessor, |
|
) |
|
from ..modeling_utils import ModelMixin |
|
from ..unet_2d import UNet2DModel |
|
from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder |
|
|
|
|
|
@dataclass |
|
class ConsistencyDecoderVAEOutput(BaseOutput): |
|
""" |
|
Output of encoding method. |
|
|
|
Args: |
|
latent_dist (`DiagonalGaussianDistribution`): |
|
Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`. |
|
`DiagonalGaussianDistribution` allows for sampling latents from the distribution. |
|
""" |
|
|
|
latent_dist: "DiagonalGaussianDistribution" |
|
|
|
|
|
class ConsistencyDecoderVAE(ModelMixin, ConfigMixin): |
|
r""" |
|
The consistency decoder used with DALL-E 3. |
|
|
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import StableDiffusionPipeline, ConsistencyDecoderVAE |
|
|
|
>>> vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16) |
|
>>> pipe = StableDiffusionPipeline.from_pretrained( |
|
... "runwayml/stable-diffusion-v1-5", vae=vae, torch_dtype=torch.float16 |
|
... ).to("cuda") |
|
|
|
>>> pipe("horse", generator=torch.manual_seed(0)).images |
|
``` |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
scaling_factor: float = 0.18215, |
|
latent_channels: int = 4, |
|
encoder_act_fn: str = "silu", |
|
encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), |
|
encoder_double_z: bool = True, |
|
encoder_down_block_types: Tuple[str, ...] = ( |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
), |
|
encoder_in_channels: int = 3, |
|
encoder_layers_per_block: int = 2, |
|
encoder_norm_num_groups: int = 32, |
|
encoder_out_channels: int = 4, |
|
decoder_add_attention: bool = False, |
|
decoder_block_out_channels: Tuple[int, ...] = (320, 640, 1024, 1024), |
|
decoder_down_block_types: Tuple[str, ...] = ( |
|
"ResnetDownsampleBlock2D", |
|
"ResnetDownsampleBlock2D", |
|
"ResnetDownsampleBlock2D", |
|
"ResnetDownsampleBlock2D", |
|
), |
|
decoder_downsample_padding: int = 1, |
|
decoder_in_channels: int = 7, |
|
decoder_layers_per_block: int = 3, |
|
decoder_norm_eps: float = 1e-05, |
|
decoder_norm_num_groups: int = 32, |
|
decoder_num_train_timesteps: int = 1024, |
|
decoder_out_channels: int = 6, |
|
decoder_resnet_time_scale_shift: str = "scale_shift", |
|
decoder_time_embedding_type: str = "learned", |
|
decoder_up_block_types: Tuple[str, ...] = ( |
|
"ResnetUpsampleBlock2D", |
|
"ResnetUpsampleBlock2D", |
|
"ResnetUpsampleBlock2D", |
|
"ResnetUpsampleBlock2D", |
|
), |
|
): |
|
super().__init__() |
|
self.encoder = Encoder( |
|
act_fn=encoder_act_fn, |
|
block_out_channels=encoder_block_out_channels, |
|
double_z=encoder_double_z, |
|
down_block_types=encoder_down_block_types, |
|
in_channels=encoder_in_channels, |
|
layers_per_block=encoder_layers_per_block, |
|
norm_num_groups=encoder_norm_num_groups, |
|
out_channels=encoder_out_channels, |
|
) |
|
|
|
self.decoder_unet = UNet2DModel( |
|
add_attention=decoder_add_attention, |
|
block_out_channels=decoder_block_out_channels, |
|
down_block_types=decoder_down_block_types, |
|
downsample_padding=decoder_downsample_padding, |
|
in_channels=decoder_in_channels, |
|
layers_per_block=decoder_layers_per_block, |
|
norm_eps=decoder_norm_eps, |
|
norm_num_groups=decoder_norm_num_groups, |
|
num_train_timesteps=decoder_num_train_timesteps, |
|
out_channels=decoder_out_channels, |
|
resnet_time_scale_shift=decoder_resnet_time_scale_shift, |
|
time_embedding_type=decoder_time_embedding_type, |
|
up_block_types=decoder_up_block_types, |
|
) |
|
self.decoder_scheduler = ConsistencyDecoderScheduler() |
|
self.register_to_config(block_out_channels=encoder_block_out_channels) |
|
self.register_to_config(force_upcast=False) |
|
self.register_buffer( |
|
"means", |
|
torch.tensor([0.38862467, 0.02253063, 0.07381133, -0.0171294])[None, :, None, None], |
|
persistent=False, |
|
) |
|
self.register_buffer( |
|
"stds", torch.tensor([0.9654121, 1.0440036, 0.76147926, 0.77022034])[None, :, None, None], persistent=False |
|
) |
|
|
|
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) |
|
|
|
self.use_slicing = False |
|
self.use_tiling = False |
|
|
|
|
|
def enable_tiling(self, use_tiling: bool = True): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.use_tiling = use_tiling |
|
|
|
|
|
def disable_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing |
|
decoding in one step. |
|
""" |
|
self.enable_tiling(False) |
|
|
|
|
|
def enable_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.use_slicing = True |
|
|
|
|
|
def disable_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing |
|
decoding in one step. |
|
""" |
|
self.use_slicing = False |
|
|
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attn_processor( |
|
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False |
|
): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor, _remove_lora=_remove_lora) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnAddedKVProcessor() |
|
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnProcessor() |
|
else: |
|
raise ValueError( |
|
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" |
|
) |
|
|
|
self.set_attn_processor(processor, _remove_lora=True) |
|
|
|
@apply_forward_hook |
|
def encode( |
|
self, x: torch.FloatTensor, return_dict: bool = True |
|
) -> Union[ConsistencyDecoderVAEOutput, Tuple[DiagonalGaussianDistribution]]: |
|
""" |
|
Encode a batch of images into latents. |
|
|
|
Args: |
|
x (`torch.FloatTensor`): Input batch of images. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether to return a [`~models.consistecy_decoder_vae.ConsistencyDecoderOoutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
The latent representations of the encoded images. If `return_dict` is True, a |
|
[`~models.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] is returned, otherwise a plain `tuple` |
|
is returned. |
|
""" |
|
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): |
|
return self.tiled_encode(x, return_dict=return_dict) |
|
|
|
if self.use_slicing and x.shape[0] > 1: |
|
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)] |
|
h = torch.cat(encoded_slices) |
|
else: |
|
h = self.encoder(x) |
|
|
|
moments = self.quant_conv(h) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
|
|
if not return_dict: |
|
return (posterior,) |
|
|
|
return ConsistencyDecoderVAEOutput(latent_dist=posterior) |
|
|
|
@apply_forward_hook |
|
def decode( |
|
self, |
|
z: torch.FloatTensor, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
num_inference_steps: int = 2, |
|
) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]: |
|
z = (z * self.config.scaling_factor - self.means) / self.stds |
|
|
|
scale_factor = 2 ** (len(self.config.block_out_channels) - 1) |
|
z = F.interpolate(z, mode="nearest", scale_factor=scale_factor) |
|
|
|
batch_size, _, height, width = z.shape |
|
|
|
self.decoder_scheduler.set_timesteps(num_inference_steps, device=self.device) |
|
|
|
x_t = self.decoder_scheduler.init_noise_sigma * randn_tensor( |
|
(batch_size, 3, height, width), generator=generator, dtype=z.dtype, device=z.device |
|
) |
|
|
|
for t in self.decoder_scheduler.timesteps: |
|
model_input = torch.concat([self.decoder_scheduler.scale_model_input(x_t, t), z], dim=1) |
|
model_output = self.decoder_unet(model_input, t).sample[:, :3, :, :] |
|
prev_sample = self.decoder_scheduler.step(model_output, t, x_t, generator).prev_sample |
|
x_t = prev_sample |
|
|
|
x_0 = x_t |
|
|
|
if not return_dict: |
|
return (x_0,) |
|
|
|
return DecoderOutput(sample=x_0) |
|
|
|
|
|
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: |
|
blend_extent = min(a.shape[2], b.shape[2], blend_extent) |
|
for y in range(blend_extent): |
|
b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) |
|
return b |
|
|
|
|
|
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: |
|
blend_extent = min(a.shape[3], b.shape[3], blend_extent) |
|
for x in range(blend_extent): |
|
b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) |
|
return b |
|
|
|
def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> ConsistencyDecoderVAEOutput: |
|
r"""Encode a batch of images using a tiled encoder. |
|
|
|
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several |
|
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is |
|
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the |
|
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the |
|
output, but they should be much less noticeable. |
|
|
|
Args: |
|
x (`torch.FloatTensor`): Input batch of images. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] instead of a |
|
plain tuple. |
|
|
|
Returns: |
|
[`~models.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] or `tuple`: |
|
If return_dict is True, a [`~models.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] is returned, |
|
otherwise a plain `tuple` is returned. |
|
""" |
|
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) |
|
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) |
|
row_limit = self.tile_latent_min_size - blend_extent |
|
|
|
|
|
rows = [] |
|
for i in range(0, x.shape[2], overlap_size): |
|
row = [] |
|
for j in range(0, x.shape[3], overlap_size): |
|
tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] |
|
tile = self.encoder(tile) |
|
tile = self.quant_conv(tile) |
|
row.append(tile) |
|
rows.append(row) |
|
result_rows = [] |
|
for i, row in enumerate(rows): |
|
result_row = [] |
|
for j, tile in enumerate(row): |
|
|
|
|
|
if i > 0: |
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) |
|
if j > 0: |
|
tile = self.blend_h(row[j - 1], tile, blend_extent) |
|
result_row.append(tile[:, :, :row_limit, :row_limit]) |
|
result_rows.append(torch.cat(result_row, dim=3)) |
|
|
|
moments = torch.cat(result_rows, dim=2) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
|
|
if not return_dict: |
|
return (posterior,) |
|
|
|
return ConsistencyDecoderVAEOutput(latent_dist=posterior) |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
sample_posterior: bool = False, |
|
return_dict: bool = True, |
|
generator: Optional[torch.Generator] = None, |
|
) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]: |
|
r""" |
|
Args: |
|
sample (`torch.FloatTensor`): Input sample. |
|
sample_posterior (`bool`, *optional*, defaults to `False`): |
|
Whether to sample from the posterior. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. |
|
generator (`torch.Generator`, *optional*, defaults to `None`): |
|
Generator to use for sampling. |
|
|
|
Returns: |
|
[`DecoderOutput`] or `tuple`: |
|
If return_dict is True, a [`DecoderOutput`] is returned, otherwise a plain `tuple` is returned. |
|
""" |
|
x = sample |
|
posterior = self.encode(x).latent_dist |
|
if sample_posterior: |
|
z = posterior.sample(generator=generator) |
|
else: |
|
z = posterior.mode() |
|
dec = self.decode(z, generator=generator).sample |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|