|
from dataclasses import dataclass |
|
from typing import Dict, Optional, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..loaders import UNet2DConditionLoadersMixin |
|
from ..utils import BaseOutput |
|
from .attention import BasicTransformerBlock |
|
from .attention_processor import ( |
|
ADDED_KV_ATTENTION_PROCESSORS, |
|
CROSS_ATTENTION_PROCESSORS, |
|
AttentionProcessor, |
|
AttnAddedKVProcessor, |
|
AttnProcessor, |
|
) |
|
from .embeddings import TimestepEmbedding, Timesteps |
|
from .modeling_utils import ModelMixin |
|
|
|
|
|
@dataclass |
|
class PriorTransformerOutput(BaseOutput): |
|
""" |
|
The output of [`PriorTransformer`]. |
|
|
|
Args: |
|
predicted_image_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`): |
|
The predicted CLIP image embedding conditioned on the CLIP text embedding input. |
|
""" |
|
|
|
predicted_image_embedding: torch.FloatTensor |
|
|
|
|
|
class PriorTransformer(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): |
|
""" |
|
A Prior Transformer model. |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 32): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. |
|
num_layers (`int`, *optional*, defaults to 20): The number of layers of Transformer blocks to use. |
|
embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `hidden_states` |
|
num_embeddings (`int`, *optional*, defaults to 77): |
|
The number of embeddings of the model input `hidden_states` |
|
additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the |
|
projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings + |
|
additional_embeddings`. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
time_embed_act_fn (`str`, *optional*, defaults to 'silu'): |
|
The activation function to use to create timestep embeddings. |
|
norm_in_type (`str`, *optional*, defaults to None): The normalization layer to apply on hidden states before |
|
passing to Transformer blocks. Set it to `None` if normalization is not needed. |
|
embedding_proj_norm_type (`str`, *optional*, defaults to None): |
|
The normalization layer to apply on the input `proj_embedding`. Set it to `None` if normalization is not |
|
needed. |
|
encoder_hid_proj_type (`str`, *optional*, defaults to `linear`): |
|
The projection layer to apply on the input `encoder_hidden_states`. Set it to `None` if |
|
`encoder_hidden_states` is `None`. |
|
added_emb_type (`str`, *optional*, defaults to `prd`): Additional embeddings to condition the model. |
|
Choose from `prd` or `None`. if choose `prd`, it will prepend a token indicating the (quantized) dot |
|
product between the text embedding and image embedding as proposed in the unclip paper |
|
https://arxiv.org/abs/2204.06125 If it is `None`, no additional embeddings will be prepended. |
|
time_embed_dim (`int, *optional*, defaults to None): The dimension of timestep embeddings. |
|
If None, will be set to `num_attention_heads * attention_head_dim` |
|
embedding_proj_dim (`int`, *optional*, default to None): |
|
The dimension of `proj_embedding`. If None, will be set to `embedding_dim`. |
|
clip_embed_dim (`int`, *optional*, default to None): |
|
The dimension of the output. If None, will be set to `embedding_dim`. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 32, |
|
attention_head_dim: int = 64, |
|
num_layers: int = 20, |
|
embedding_dim: int = 768, |
|
num_embeddings=77, |
|
additional_embeddings=4, |
|
dropout: float = 0.0, |
|
time_embed_act_fn: str = "silu", |
|
norm_in_type: Optional[str] = None, |
|
embedding_proj_norm_type: Optional[str] = None, |
|
encoder_hid_proj_type: Optional[str] = "linear", |
|
added_emb_type: Optional[str] = "prd", |
|
time_embed_dim: Optional[int] = None, |
|
embedding_proj_dim: Optional[int] = None, |
|
clip_embed_dim: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
inner_dim = num_attention_heads * attention_head_dim |
|
self.additional_embeddings = additional_embeddings |
|
|
|
time_embed_dim = time_embed_dim or inner_dim |
|
embedding_proj_dim = embedding_proj_dim or embedding_dim |
|
clip_embed_dim = clip_embed_dim or embedding_dim |
|
|
|
self.time_proj = Timesteps(inner_dim, True, 0) |
|
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, out_dim=inner_dim, act_fn=time_embed_act_fn) |
|
|
|
self.proj_in = nn.Linear(embedding_dim, inner_dim) |
|
|
|
if embedding_proj_norm_type is None: |
|
self.embedding_proj_norm = None |
|
elif embedding_proj_norm_type == "layer": |
|
self.embedding_proj_norm = nn.LayerNorm(embedding_proj_dim) |
|
else: |
|
raise ValueError(f"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}") |
|
|
|
self.embedding_proj = nn.Linear(embedding_proj_dim, inner_dim) |
|
|
|
if encoder_hid_proj_type is None: |
|
self.encoder_hidden_states_proj = None |
|
elif encoder_hid_proj_type == "linear": |
|
self.encoder_hidden_states_proj = nn.Linear(embedding_dim, inner_dim) |
|
else: |
|
raise ValueError(f"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}") |
|
|
|
self.positional_embedding = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, inner_dim)) |
|
|
|
if added_emb_type == "prd": |
|
self.prd_embedding = nn.Parameter(torch.zeros(1, 1, inner_dim)) |
|
elif added_emb_type is None: |
|
self.prd_embedding = None |
|
else: |
|
raise ValueError( |
|
f"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." |
|
) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
activation_fn="gelu", |
|
attention_bias=True, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
if norm_in_type == "layer": |
|
self.norm_in = nn.LayerNorm(inner_dim) |
|
elif norm_in_type is None: |
|
self.norm_in = None |
|
else: |
|
raise ValueError(f"Unsupported norm_in_type: {norm_in_type}.") |
|
|
|
self.norm_out = nn.LayerNorm(inner_dim) |
|
|
|
self.proj_to_clip_embeddings = nn.Linear(inner_dim, clip_embed_dim) |
|
|
|
causal_attention_mask = torch.full( |
|
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -10000.0 |
|
) |
|
causal_attention_mask.triu_(1) |
|
causal_attention_mask = causal_attention_mask[None, ...] |
|
self.register_buffer("causal_attention_mask", causal_attention_mask, persistent=False) |
|
|
|
self.clip_mean = nn.Parameter(torch.zeros(1, clip_embed_dim)) |
|
self.clip_std = nn.Parameter(torch.zeros(1, clip_embed_dim)) |
|
|
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attn_processor( |
|
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False |
|
): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor, _remove_lora=_remove_lora) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnAddedKVProcessor() |
|
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnProcessor() |
|
else: |
|
raise ValueError( |
|
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" |
|
) |
|
|
|
self.set_attn_processor(processor, _remove_lora=True) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
timestep: Union[torch.Tensor, float, int], |
|
proj_embedding: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
return_dict: bool = True, |
|
): |
|
""" |
|
The [`PriorTransformer`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`): |
|
The currently predicted image embeddings. |
|
timestep (`torch.LongTensor`): |
|
Current denoising step. |
|
proj_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`): |
|
Projected embedding vector the denoising process is conditioned on. |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_embeddings, embedding_dim)`): |
|
Hidden states of the text embeddings the denoising process is conditioned on. |
|
attention_mask (`torch.BoolTensor` of shape `(batch_size, num_embeddings)`): |
|
Text mask for the text embeddings. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.prior_transformer.PriorTransformerOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
[`~models.prior_transformer.PriorTransformerOutput`] or `tuple`: |
|
If return_dict is True, a [`~models.prior_transformer.PriorTransformerOutput`] is returned, otherwise a |
|
tuple is returned where the first element is the sample tensor. |
|
""" |
|
batch_size = hidden_states.shape[0] |
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
timesteps = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device) |
|
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(hidden_states.device) |
|
|
|
|
|
timesteps = timesteps * torch.ones(batch_size, dtype=timesteps.dtype, device=timesteps.device) |
|
|
|
timesteps_projected = self.time_proj(timesteps) |
|
|
|
|
|
|
|
timesteps_projected = timesteps_projected.to(dtype=self.dtype) |
|
time_embeddings = self.time_embedding(timesteps_projected) |
|
|
|
if self.embedding_proj_norm is not None: |
|
proj_embedding = self.embedding_proj_norm(proj_embedding) |
|
|
|
proj_embeddings = self.embedding_proj(proj_embedding) |
|
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: |
|
encoder_hidden_states = self.encoder_hidden_states_proj(encoder_hidden_states) |
|
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: |
|
raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set") |
|
|
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
positional_embeddings = self.positional_embedding.to(hidden_states.dtype) |
|
|
|
additional_embeds = [] |
|
additional_embeddings_len = 0 |
|
|
|
if encoder_hidden_states is not None: |
|
additional_embeds.append(encoder_hidden_states) |
|
additional_embeddings_len += encoder_hidden_states.shape[1] |
|
|
|
if len(proj_embeddings.shape) == 2: |
|
proj_embeddings = proj_embeddings[:, None, :] |
|
|
|
if len(hidden_states.shape) == 2: |
|
hidden_states = hidden_states[:, None, :] |
|
|
|
additional_embeds = additional_embeds + [ |
|
proj_embeddings, |
|
time_embeddings[:, None, :], |
|
hidden_states, |
|
] |
|
|
|
if self.prd_embedding is not None: |
|
prd_embedding = self.prd_embedding.to(hidden_states.dtype).expand(batch_size, -1, -1) |
|
additional_embeds.append(prd_embedding) |
|
|
|
hidden_states = torch.cat( |
|
additional_embeds, |
|
dim=1, |
|
) |
|
|
|
|
|
additional_embeddings_len = additional_embeddings_len + proj_embeddings.shape[1] + 1 |
|
if positional_embeddings.shape[1] < hidden_states.shape[1]: |
|
positional_embeddings = F.pad( |
|
positional_embeddings, |
|
( |
|
0, |
|
0, |
|
additional_embeddings_len, |
|
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, |
|
), |
|
value=0.0, |
|
) |
|
|
|
hidden_states = hidden_states + positional_embeddings |
|
|
|
if attention_mask is not None: |
|
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 |
|
attention_mask = F.pad(attention_mask, (0, self.additional_embeddings), value=0.0) |
|
attention_mask = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype) |
|
attention_mask = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0) |
|
|
|
if self.norm_in is not None: |
|
hidden_states = self.norm_in(hidden_states) |
|
|
|
for block in self.transformer_blocks: |
|
hidden_states = block(hidden_states, attention_mask=attention_mask) |
|
|
|
hidden_states = self.norm_out(hidden_states) |
|
|
|
if self.prd_embedding is not None: |
|
hidden_states = hidden_states[:, -1] |
|
else: |
|
hidden_states = hidden_states[:, additional_embeddings_len:] |
|
|
|
predicted_image_embedding = self.proj_to_clip_embeddings(hidden_states) |
|
|
|
if not return_dict: |
|
return (predicted_image_embedding,) |
|
|
|
return PriorTransformerOutput(predicted_image_embedding=predicted_image_embedding) |
|
|
|
def post_process_latents(self, prior_latents): |
|
prior_latents = (prior_latents * self.clip_std) + self.clip_mean |
|
return prior_latents |
|
|