|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ..utils import USE_PEFT_BACKEND |
|
from .activations import get_activation |
|
from .attention_processor import SpatialNorm |
|
from .downsampling import ( |
|
Downsample1D, |
|
Downsample2D, |
|
FirDownsample2D, |
|
KDownsample2D, |
|
downsample_2d, |
|
) |
|
from .lora import LoRACompatibleConv, LoRACompatibleLinear |
|
from .normalization import AdaGroupNorm |
|
from .upsampling import ( |
|
FirUpsample2D, |
|
KUpsample2D, |
|
Upsample1D, |
|
Upsample2D, |
|
upfirdn2d_native, |
|
upsample_2d, |
|
) |
|
|
|
|
|
class ResnetBlock2D(nn.Module): |
|
r""" |
|
A Resnet block. |
|
|
|
Parameters: |
|
in_channels (`int`): The number of channels in the input. |
|
out_channels (`int`, *optional*, default to be `None`): |
|
The number of output channels for the first conv2d layer. If None, same as `in_channels`. |
|
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. |
|
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. |
|
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. |
|
groups_out (`int`, *optional*, default to None): |
|
The number of groups to use for the second normalization layer. if set to None, same as `groups`. |
|
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. |
|
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use. |
|
time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config. |
|
By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or |
|
"ada_group" for a stronger conditioning with scale and shift. |
|
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see |
|
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`]. |
|
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output. |
|
use_in_shortcut (`bool`, *optional*, default to `True`): |
|
If `True`, add a 1x1 nn.conv2d layer for skip-connection. |
|
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer. |
|
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer. |
|
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the |
|
`conv_shortcut` output. |
|
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output. |
|
If None, same as `out_channels`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
in_channels: int, |
|
out_channels: Optional[int] = None, |
|
conv_shortcut: bool = False, |
|
dropout: float = 0.0, |
|
temb_channels: int = 512, |
|
groups: int = 32, |
|
groups_out: Optional[int] = None, |
|
pre_norm: bool = True, |
|
eps: float = 1e-6, |
|
non_linearity: str = "swish", |
|
skip_time_act: bool = False, |
|
time_embedding_norm: str = "default", |
|
kernel: Optional[torch.FloatTensor] = None, |
|
output_scale_factor: float = 1.0, |
|
use_in_shortcut: Optional[bool] = None, |
|
up: bool = False, |
|
down: bool = False, |
|
conv_shortcut_bias: bool = True, |
|
conv_2d_out_channels: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.pre_norm = pre_norm |
|
self.pre_norm = True |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
self.up = up |
|
self.down = down |
|
self.output_scale_factor = output_scale_factor |
|
self.time_embedding_norm = time_embedding_norm |
|
self.skip_time_act = skip_time_act |
|
|
|
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear |
|
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv |
|
|
|
if groups_out is None: |
|
groups_out = groups |
|
|
|
if self.time_embedding_norm == "ada_group": |
|
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps) |
|
elif self.time_embedding_norm == "spatial": |
|
self.norm1 = SpatialNorm(in_channels, temb_channels) |
|
else: |
|
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) |
|
|
|
self.conv1 = conv_cls(in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
if temb_channels is not None: |
|
if self.time_embedding_norm == "default": |
|
self.time_emb_proj = linear_cls(temb_channels, out_channels) |
|
elif self.time_embedding_norm == "scale_shift": |
|
self.time_emb_proj = linear_cls(temb_channels, 2 * out_channels) |
|
elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
self.time_emb_proj = None |
|
else: |
|
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") |
|
else: |
|
self.time_emb_proj = None |
|
|
|
if self.time_embedding_norm == "ada_group": |
|
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps) |
|
elif self.time_embedding_norm == "spatial": |
|
self.norm2 = SpatialNorm(out_channels, temb_channels) |
|
else: |
|
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) |
|
|
|
self.dropout = torch.nn.Dropout(dropout) |
|
conv_2d_out_channels = conv_2d_out_channels or out_channels |
|
self.conv2 = conv_cls(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
self.nonlinearity = get_activation(non_linearity) |
|
|
|
self.upsample = self.downsample = None |
|
if self.up: |
|
if kernel == "fir": |
|
fir_kernel = (1, 3, 3, 1) |
|
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) |
|
elif kernel == "sde_vp": |
|
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") |
|
else: |
|
self.upsample = Upsample2D(in_channels, use_conv=False) |
|
elif self.down: |
|
if kernel == "fir": |
|
fir_kernel = (1, 3, 3, 1) |
|
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) |
|
elif kernel == "sde_vp": |
|
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) |
|
else: |
|
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op") |
|
|
|
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut |
|
|
|
self.conv_shortcut = None |
|
if self.use_in_shortcut: |
|
self.conv_shortcut = conv_cls( |
|
in_channels, |
|
conv_2d_out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=conv_shortcut_bias, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_tensor: torch.FloatTensor, |
|
temb: torch.FloatTensor, |
|
scale: float = 1.0, |
|
) -> torch.FloatTensor: |
|
hidden_states = input_tensor |
|
|
|
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
hidden_states = self.norm1(hidden_states, temb) |
|
else: |
|
hidden_states = self.norm1(hidden_states) |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
if self.upsample is not None: |
|
|
|
if hidden_states.shape[0] >= 64: |
|
input_tensor = input_tensor.contiguous() |
|
hidden_states = hidden_states.contiguous() |
|
input_tensor = ( |
|
self.upsample(input_tensor, scale=scale) |
|
if isinstance(self.upsample, Upsample2D) |
|
else self.upsample(input_tensor) |
|
) |
|
hidden_states = ( |
|
self.upsample(hidden_states, scale=scale) |
|
if isinstance(self.upsample, Upsample2D) |
|
else self.upsample(hidden_states) |
|
) |
|
elif self.downsample is not None: |
|
input_tensor = ( |
|
self.downsample(input_tensor, scale=scale) |
|
if isinstance(self.downsample, Downsample2D) |
|
else self.downsample(input_tensor) |
|
) |
|
hidden_states = ( |
|
self.downsample(hidden_states, scale=scale) |
|
if isinstance(self.downsample, Downsample2D) |
|
else self.downsample(hidden_states) |
|
) |
|
|
|
hidden_states = self.conv1(hidden_states, scale) if not USE_PEFT_BACKEND else self.conv1(hidden_states) |
|
|
|
if self.time_emb_proj is not None: |
|
if not self.skip_time_act: |
|
temb = self.nonlinearity(temb) |
|
temb = ( |
|
self.time_emb_proj(temb, scale)[:, :, None, None] |
|
if not USE_PEFT_BACKEND |
|
else self.time_emb_proj(temb)[:, :, None, None] |
|
) |
|
|
|
if temb is not None and self.time_embedding_norm == "default": |
|
hidden_states = hidden_states + temb |
|
|
|
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
hidden_states = self.norm2(hidden_states, temb) |
|
else: |
|
hidden_states = self.norm2(hidden_states) |
|
|
|
if temb is not None and self.time_embedding_norm == "scale_shift": |
|
scale, shift = torch.chunk(temb, 2, dim=1) |
|
hidden_states = hidden_states * (1 + scale) + shift |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.conv2(hidden_states, scale) if not USE_PEFT_BACKEND else self.conv2(hidden_states) |
|
|
|
if self.conv_shortcut is not None: |
|
input_tensor = ( |
|
self.conv_shortcut(input_tensor, scale) if not USE_PEFT_BACKEND else self.conv_shortcut(input_tensor) |
|
) |
|
|
|
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor |
|
|
|
return output_tensor |
|
|
|
|
|
|
|
def rearrange_dims(tensor: torch.Tensor) -> torch.Tensor: |
|
if len(tensor.shape) == 2: |
|
return tensor[:, :, None] |
|
if len(tensor.shape) == 3: |
|
return tensor[:, :, None, :] |
|
elif len(tensor.shape) == 4: |
|
return tensor[:, :, 0, :] |
|
else: |
|
raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.") |
|
|
|
|
|
class Conv1dBlock(nn.Module): |
|
""" |
|
Conv1d --> GroupNorm --> Mish |
|
|
|
Parameters: |
|
inp_channels (`int`): Number of input channels. |
|
out_channels (`int`): Number of output channels. |
|
kernel_size (`int` or `tuple`): Size of the convolving kernel. |
|
n_groups (`int`, default `8`): Number of groups to separate the channels into. |
|
activation (`str`, defaults to `mish`): Name of the activation function. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
inp_channels: int, |
|
out_channels: int, |
|
kernel_size: Union[int, Tuple[int, int]], |
|
n_groups: int = 8, |
|
activation: str = "mish", |
|
): |
|
super().__init__() |
|
|
|
self.conv1d = nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2) |
|
self.group_norm = nn.GroupNorm(n_groups, out_channels) |
|
self.mish = get_activation(activation) |
|
|
|
def forward(self, inputs: torch.Tensor) -> torch.Tensor: |
|
intermediate_repr = self.conv1d(inputs) |
|
intermediate_repr = rearrange_dims(intermediate_repr) |
|
intermediate_repr = self.group_norm(intermediate_repr) |
|
intermediate_repr = rearrange_dims(intermediate_repr) |
|
output = self.mish(intermediate_repr) |
|
return output |
|
|
|
|
|
|
|
class ResidualTemporalBlock1D(nn.Module): |
|
""" |
|
Residual 1D block with temporal convolutions. |
|
|
|
Parameters: |
|
inp_channels (`int`): Number of input channels. |
|
out_channels (`int`): Number of output channels. |
|
embed_dim (`int`): Embedding dimension. |
|
kernel_size (`int` or `tuple`): Size of the convolving kernel. |
|
activation (`str`, defaults `mish`): It is possible to choose the right activation function. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
inp_channels: int, |
|
out_channels: int, |
|
embed_dim: int, |
|
kernel_size: Union[int, Tuple[int, int]] = 5, |
|
activation: str = "mish", |
|
): |
|
super().__init__() |
|
self.conv_in = Conv1dBlock(inp_channels, out_channels, kernel_size) |
|
self.conv_out = Conv1dBlock(out_channels, out_channels, kernel_size) |
|
|
|
self.time_emb_act = get_activation(activation) |
|
self.time_emb = nn.Linear(embed_dim, out_channels) |
|
|
|
self.residual_conv = ( |
|
nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity() |
|
) |
|
|
|
def forward(self, inputs: torch.Tensor, t: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Args: |
|
inputs : [ batch_size x inp_channels x horizon ] |
|
t : [ batch_size x embed_dim ] |
|
|
|
returns: |
|
out : [ batch_size x out_channels x horizon ] |
|
""" |
|
t = self.time_emb_act(t) |
|
t = self.time_emb(t) |
|
out = self.conv_in(inputs) + rearrange_dims(t) |
|
out = self.conv_out(out) |
|
return out + self.residual_conv(inputs) |
|
|
|
|
|
class TemporalConvLayer(nn.Module): |
|
""" |
|
Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from: |
|
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016 |
|
|
|
Parameters: |
|
in_dim (`int`): Number of input channels. |
|
out_dim (`int`): Number of output channels. |
|
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_dim: int, |
|
out_dim: Optional[int] = None, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
): |
|
super().__init__() |
|
out_dim = out_dim or in_dim |
|
self.in_dim = in_dim |
|
self.out_dim = out_dim |
|
|
|
|
|
self.conv1 = nn.Sequential( |
|
nn.GroupNorm(norm_num_groups, in_dim), |
|
nn.SiLU(), |
|
nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding=(1, 0, 0)), |
|
) |
|
self.conv2 = nn.Sequential( |
|
nn.GroupNorm(norm_num_groups, out_dim), |
|
nn.SiLU(), |
|
nn.Dropout(dropout), |
|
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)), |
|
) |
|
self.conv3 = nn.Sequential( |
|
nn.GroupNorm(norm_num_groups, out_dim), |
|
nn.SiLU(), |
|
nn.Dropout(dropout), |
|
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)), |
|
) |
|
self.conv4 = nn.Sequential( |
|
nn.GroupNorm(norm_num_groups, out_dim), |
|
nn.SiLU(), |
|
nn.Dropout(dropout), |
|
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)), |
|
) |
|
|
|
|
|
nn.init.zeros_(self.conv4[-1].weight) |
|
nn.init.zeros_(self.conv4[-1].bias) |
|
|
|
def forward(self, hidden_states: torch.Tensor, num_frames: int = 1) -> torch.Tensor: |
|
hidden_states = ( |
|
hidden_states[None, :].reshape((-1, num_frames) + hidden_states.shape[1:]).permute(0, 2, 1, 3, 4) |
|
) |
|
|
|
identity = hidden_states |
|
hidden_states = self.conv1(hidden_states) |
|
hidden_states = self.conv2(hidden_states) |
|
hidden_states = self.conv3(hidden_states) |
|
hidden_states = self.conv4(hidden_states) |
|
|
|
hidden_states = identity + hidden_states |
|
|
|
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape( |
|
(hidden_states.shape[0] * hidden_states.shape[2], -1) + hidden_states.shape[3:] |
|
) |
|
return hidden_states |
|
|
|
|
|
class TemporalResnetBlock(nn.Module): |
|
r""" |
|
A Resnet block. |
|
|
|
Parameters: |
|
in_channels (`int`): The number of channels in the input. |
|
out_channels (`int`, *optional*, default to be `None`): |
|
The number of output channels for the first conv2d layer. If None, same as `in_channels`. |
|
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. |
|
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: Optional[int] = None, |
|
temb_channels: int = 512, |
|
eps: float = 1e-6, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
|
|
kernel_size = (3, 1, 1) |
|
padding = [k // 2 for k in kernel_size] |
|
|
|
self.norm1 = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=eps, affine=True) |
|
self.conv1 = nn.Conv3d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=1, |
|
padding=padding, |
|
) |
|
|
|
if temb_channels is not None: |
|
self.time_emb_proj = nn.Linear(temb_channels, out_channels) |
|
else: |
|
self.time_emb_proj = None |
|
|
|
self.norm2 = torch.nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=eps, affine=True) |
|
|
|
self.dropout = torch.nn.Dropout(0.0) |
|
self.conv2 = nn.Conv3d( |
|
out_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=1, |
|
padding=padding, |
|
) |
|
|
|
self.nonlinearity = get_activation("silu") |
|
|
|
self.use_in_shortcut = self.in_channels != out_channels |
|
|
|
self.conv_shortcut = None |
|
if self.use_in_shortcut: |
|
self.conv_shortcut = nn.Conv3d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) |
|
|
|
def forward(self, input_tensor: torch.FloatTensor, temb: torch.FloatTensor) -> torch.FloatTensor: |
|
hidden_states = input_tensor |
|
|
|
hidden_states = self.norm1(hidden_states) |
|
hidden_states = self.nonlinearity(hidden_states) |
|
hidden_states = self.conv1(hidden_states) |
|
|
|
if self.time_emb_proj is not None: |
|
temb = self.nonlinearity(temb) |
|
temb = self.time_emb_proj(temb)[:, :, :, None, None] |
|
temb = temb.permute(0, 2, 1, 3, 4) |
|
hidden_states = hidden_states + temb |
|
|
|
hidden_states = self.norm2(hidden_states) |
|
hidden_states = self.nonlinearity(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.conv2(hidden_states) |
|
|
|
if self.conv_shortcut is not None: |
|
input_tensor = self.conv_shortcut(input_tensor) |
|
|
|
output_tensor = input_tensor + hidden_states |
|
|
|
return output_tensor |
|
|
|
|
|
|
|
class SpatioTemporalResBlock(nn.Module): |
|
r""" |
|
A SpatioTemporal Resnet block. |
|
|
|
Parameters: |
|
in_channels (`int`): The number of channels in the input. |
|
out_channels (`int`, *optional*, default to be `None`): |
|
The number of output channels for the first conv2d layer. If None, same as `in_channels`. |
|
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. |
|
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the spatial resenet. |
|
temporal_eps (`float`, *optional*, defaults to `eps`): The epsilon to use for the temporal resnet. |
|
merge_factor (`float`, *optional*, defaults to `0.5`): The merge factor to use for the temporal mixing. |
|
merge_strategy (`str`, *optional*, defaults to `learned_with_images`): |
|
The merge strategy to use for the temporal mixing. |
|
switch_spatial_to_temporal_mix (`bool`, *optional*, defaults to `False`): |
|
If `True`, switch the spatial and temporal mixing. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: Optional[int] = None, |
|
temb_channels: int = 512, |
|
eps: float = 1e-6, |
|
temporal_eps: Optional[float] = None, |
|
merge_factor: float = 0.5, |
|
merge_strategy="learned_with_images", |
|
switch_spatial_to_temporal_mix: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.spatial_res_block = ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=eps, |
|
) |
|
|
|
self.temporal_res_block = TemporalResnetBlock( |
|
in_channels=out_channels if out_channels is not None else in_channels, |
|
out_channels=out_channels if out_channels is not None else in_channels, |
|
temb_channels=temb_channels, |
|
eps=temporal_eps if temporal_eps is not None else eps, |
|
) |
|
|
|
self.time_mixer = AlphaBlender( |
|
alpha=merge_factor, |
|
merge_strategy=merge_strategy, |
|
switch_spatial_to_temporal_mix=switch_spatial_to_temporal_mix, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: Optional[torch.FloatTensor] = None, |
|
image_only_indicator: Optional[torch.Tensor] = None, |
|
): |
|
num_frames = image_only_indicator.shape[-1] |
|
hidden_states = self.spatial_res_block(hidden_states, temb) |
|
|
|
batch_frames, channels, height, width = hidden_states.shape |
|
batch_size = batch_frames // num_frames |
|
|
|
hidden_states_mix = ( |
|
hidden_states[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4) |
|
) |
|
hidden_states = ( |
|
hidden_states[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4) |
|
) |
|
|
|
if temb is not None: |
|
temb = temb.reshape(batch_size, num_frames, -1) |
|
|
|
hidden_states = self.temporal_res_block(hidden_states, temb) |
|
hidden_states = self.time_mixer( |
|
x_spatial=hidden_states_mix, |
|
x_temporal=hidden_states, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
|
|
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width) |
|
return hidden_states |
|
|
|
|
|
class AlphaBlender(nn.Module): |
|
r""" |
|
A module to blend spatial and temporal features. |
|
|
|
Parameters: |
|
alpha (`float`): The initial value of the blending factor. |
|
merge_strategy (`str`, *optional*, defaults to `learned_with_images`): |
|
The merge strategy to use for the temporal mixing. |
|
switch_spatial_to_temporal_mix (`bool`, *optional*, defaults to `False`): |
|
If `True`, switch the spatial and temporal mixing. |
|
""" |
|
|
|
strategies = ["learned", "fixed", "learned_with_images"] |
|
|
|
def __init__( |
|
self, |
|
alpha: float, |
|
merge_strategy: str = "learned_with_images", |
|
switch_spatial_to_temporal_mix: bool = False, |
|
): |
|
super().__init__() |
|
self.merge_strategy = merge_strategy |
|
self.switch_spatial_to_temporal_mix = switch_spatial_to_temporal_mix |
|
|
|
if merge_strategy not in self.strategies: |
|
raise ValueError(f"merge_strategy needs to be in {self.strategies}") |
|
|
|
if self.merge_strategy == "fixed": |
|
self.register_buffer("mix_factor", torch.Tensor([alpha])) |
|
elif self.merge_strategy == "learned" or self.merge_strategy == "learned_with_images": |
|
self.register_parameter("mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))) |
|
else: |
|
raise ValueError(f"Unknown merge strategy {self.merge_strategy}") |
|
|
|
def get_alpha(self, image_only_indicator: torch.Tensor, ndims: int) -> torch.Tensor: |
|
if self.merge_strategy == "fixed": |
|
alpha = self.mix_factor |
|
|
|
elif self.merge_strategy == "learned": |
|
alpha = torch.sigmoid(self.mix_factor) |
|
|
|
elif self.merge_strategy == "learned_with_images": |
|
if image_only_indicator is None: |
|
raise ValueError("Please provide image_only_indicator to use learned_with_images merge strategy") |
|
|
|
alpha = torch.where( |
|
image_only_indicator.bool(), |
|
torch.ones(1, 1, device=image_only_indicator.device), |
|
torch.sigmoid(self.mix_factor)[..., None], |
|
) |
|
|
|
|
|
if ndims == 5: |
|
alpha = alpha[:, None, :, None, None] |
|
|
|
elif ndims == 3: |
|
alpha = alpha.reshape(-1)[:, None, None] |
|
else: |
|
raise ValueError(f"Unexpected ndims {ndims}. Dimensions should be 3 or 5") |
|
|
|
else: |
|
raise NotImplementedError |
|
|
|
return alpha |
|
|
|
def forward( |
|
self, |
|
x_spatial: torch.Tensor, |
|
x_temporal: torch.Tensor, |
|
image_only_indicator: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
alpha = self.get_alpha(image_only_indicator, x_spatial.ndim) |
|
alpha = alpha.to(x_spatial.dtype) |
|
|
|
if self.switch_spatial_to_temporal_mix: |
|
alpha = 1.0 - alpha |
|
|
|
x = alpha * x_spatial + (1.0 - alpha) * x_temporal |
|
return x |
|
|