|
import numpy as np |
|
import torch |
|
import matplotlib.pyplot as plt |
|
import cv2 |
|
import sys |
|
sys.path.append("..") |
|
from segment_anything import sam_model_registry, SamPredictor |
|
|
|
def show_mask(mask, ax, random_color=False): |
|
if random_color: |
|
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) |
|
else: |
|
color = np.array([30/255, 144/255, 255/255, 0.6]) |
|
h, w = mask.shape[-2:] |
|
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) |
|
ax.imshow(mask_image) |
|
|
|
def show_points(coords, labels, ax, marker_size=375): |
|
pos_points = coords[labels==1] |
|
neg_points = coords[labels==0] |
|
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) |
|
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) |
|
|
|
def show_box(box, ax): |
|
x0, y0 = box[0], box[1] |
|
w, h = box[2] - box[0], box[3] - box[1] |
|
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) |
|
|
|
|
|
|
|
sam_checkpoint = "./script/sam_vit_h_4b8939.pth" |
|
model_type = "vit_h" |
|
device = "cuda" |
|
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) |
|
sam.to(device=device) |
|
|
|
predictor = SamPredictor(sam) |
|
|
|
save_path = "./validation_demo/Demo/fish/" |
|
image = cv2.imread("./validation_demo/Demo/fish/demo.jpg") |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
predictor.set_image(image) |
|
|
|
|
|
input_point = np.array([[714,250]]) |
|
input_label = np.array([1]) |
|
|
|
masks, scores, logits = predictor.predict( |
|
point_coords=input_point, |
|
point_labels=input_label, |
|
multimask_output=True, |
|
) |
|
|
|
for i, (mask, score) in enumerate(zip(masks, scores)): |
|
h, w = mask.shape[-2:] |
|
|
|
mask = mask.reshape(h, w, 1) * 255 |
|
|
|
cv2.imwrite(save_path+str(i)+"_fish2.jpg",mask) |
|
print(masks.shape) |
|
print(score) |
|
|