Dragreal / utils /dataset_line.py
BasicNp's picture
Upload 1672 files
e8aa256 verified
import os, io, csv, math, random
import numpy as np
from einops import rearrange
import torch
from decord import VideoReader
import cv2
from scipy.ndimage import distance_transform_edt
import torchvision.transforms as transforms
from torch.utils.data.dataset import Dataset
# from utils.util import zero_rank_print
#from torchvision.io import read_image
from PIL import Image
def pil_image_to_numpy(image, is_maks = False, index = 1):
"""Convert a PIL image to a NumPy array."""
if is_maks:
# index = 1
image = image.resize((256, 256))
# image = (np.array(image)==index)*1
# image = cv2.cvtColor(image.astype(np.uint8), cv2.COLOR_GRAY2RGB)
return np.array(image)
else:
if image.mode != 'RGB':
image = image.convert('RGB')
image = image.resize((256, 256))
return np.array(image)
def numpy_to_pt(images: np.ndarray, is_mask=False) -> torch.FloatTensor:
"""Convert a NumPy image to a PyTorch tensor."""
if images.ndim == 3:
images = images[..., None]
images = torch.from_numpy(images.transpose(0, 3, 1, 2))
if is_mask:
return images.float()
else:
return images.float() / 255
class WebVid10M(Dataset):
def __init__(
self,video_folder,ann_folder,motion_folder,
sample_size=256, sample_stride=4, sample_n_frames=14,
):
self.dataset = [i for i in os.listdir(video_folder)]
# self.dataset = ["cce03c2a9b"]
self.length = len(self.dataset)
print(f"data scale: {self.length}")
random.shuffle(self.dataset)
self.video_folder = video_folder
self.sample_stride = sample_stride
self.sample_n_frames = sample_n_frames
self.ann_folder = ann_folder
self.heatmap = self.gen_gaussian_heatmap()
self.motion_values_folder=motion_folder
self.sample_size = sample_size
print("length",len(self.dataset))
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
print("sample size",sample_size)
self.pixel_transforms = transforms.Compose([
# transforms.RandomHorizontalFlip(),
transforms.Resize(sample_size),
# transforms.CenterCrop(sample_size),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
])
def center_crop(self,img):
h, w = img.shape[-2:] # Assuming img shape is [C, H, W] or [B, C, H, W]
min_dim = min(h, w)
top = (h - min_dim) // 2
left = (w - min_dim) // 2
return img[..., top:top+min_dim, left:left+min_dim]
def gen_gaussian_heatmap(self,imgSize=200):
circle_img = np.zeros((imgSize, imgSize), np.float32)
circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1)
# print(circle_mask)
isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)
# 生成高斯图
for i in range(imgSize):
for j in range(imgSize):
isotropicGrayscaleImage[i, j] = 1 / 2 / np.pi / (40 ** 2) * np.exp(
-1 / 2 * ((i - imgSize / 2) ** 2 / (40 ** 2) + (j - imgSize / 2) ** 2 / (40 ** 2)))
# 如果要可视化对比正方形和最大内切圆高斯图的区别,注释下面这行即可
isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8)
# 将图像调整大小为 50x50
# isotropicGrayscaleImage = cv2.resize(isotropicGrayscaleImage, (40, 40))
return isotropicGrayscaleImage
def calculate_center_coordinates(self,masks,ids, side=20):
center_coordinates = []
ids = random.choice(ids[1:])
for index_mask, mask in enumerate(masks):
new_img = np.zeros((self.sample_size, self.sample_size), np.float32)
# 计算坐标的平均值,即中心坐标
# non_zero_coordinates = np.column_stack(np.where(mask_array > 0))
# center_coordinate = np.mean(non_zero_coordinates, axis=0)[:2].astype(np.uint8)
# print(ids)
for index in [ids]:
mask_array = (np.array(mask)==index)*1
# 找到最大距离的索引
distance_transform = distance_transform_edt(mask_array)
center_coordinate = np.unravel_index(np.argmax(distance_transform), distance_transform.shape)
y1 = max(center_coordinate[0]-side,0)
y2 = min(center_coordinate[0]+side,self.sample_size-1)
x1 = max(center_coordinate[1]-side,0)
x2 = min(center_coordinate[1]+side,self.sample_size-1)
need_map = cv2.resize(self.heatmap, (x2-x1, y2-y1))
new_img[y1:y2,x1:x2] = need_map
if index_mask == 0:
new_img = mask_array*255
new_img = cv2.cvtColor(new_img.astype(np.uint8), cv2.COLOR_GRAY2RGB)
center_coordinates.append(new_img)
return center_coordinates
def get_batch(self, idx):
def sort_frames(frame_name):
return int(frame_name.split('.')[0])
while True:
videoid = self.dataset[idx]
# videoid = video_dict['videoid']
preprocessed_dir = os.path.join(self.video_folder, videoid)
ann_folder = os.path.join(self.ann_folder, videoid)
motion_values_file = os.path.join(self.motion_values_folder, videoid, videoid + "_average_motion.txt")
if not os.path.exists(ann_folder):
idx = random.randint(0, len(self.dataset) - 1)
continue
# Sort and limit the number of image and depth files to 14
image_files = sorted(os.listdir(preprocessed_dir), key=sort_frames)[:14]
depth_files = sorted(os.listdir(ann_folder), key=sort_frames)[:14]
# Check if there are enough frames for both image and depth
# if len(image_files) < 14 or len(depth_files) < 14:
# idx = random.randint(0, len(self.dataset) - 1)
# continue
# Load image frames
numpy_images = np.array([pil_image_to_numpy(Image.open(os.path.join(preprocessed_dir, img))) for img in image_files])
pixel_values = numpy_to_pt(numpy_images)
# Load depth frames
mask = Image.open(os.path.join(ann_folder, depth_files[0])).convert('P')
ids = [i for i in np.unique(mask)]
# print(ids)
if len(ids)==1:
idx = random.randint(0, len(self.dataset) - 1)
continue
# ids = random.choice(ids[1:])
numpy_depth_images = np.array([pil_image_to_numpy(Image.open(os.path.join(ann_folder, df)).convert('P'),True,ids) for df in depth_files])
heatmap_pixel_values = np.array(self.calculate_center_coordinates(numpy_depth_images,ids))
# center_coordinates = self.coordinates_normalize(center_coordinates)
mask_pixel_values = numpy_to_pt(numpy_depth_images,True)
heatmap_pixel_values = numpy_to_pt(heatmap_pixel_values,True)
# Load motion values
motion_values = 180
# with open(motion_values_file, 'r') as file:
# motion_values = float(file.read().strip())
return pixel_values, mask_pixel_values, motion_values, heatmap_pixel_values
def __len__(self):
return self.length
def coordinates_normalize(self,center_coordinates):
first_point = center_coordinates[0]
center_coordinates = [one-first_point for one in center_coordinates]
return center_coordinates
def normalize(self, images):
"""
Normalize an image array to [-1,1].
"""
return 2.0 * images - 1.0
def __getitem__(self, idx):
#while True:
# try:
pixel_values, depth_pixel_values,motion_values,heatmap_pixel_values = self.get_batch(idx)
# break
# except Exception as e:
# print(e)
# idx = random.randint(0, self.length - 1)
# print()
pixel_values = self.normalize(pixel_values)
sample = dict(pixel_values=pixel_values, depth_pixel_values=depth_pixel_values,
motion_values=motion_values,heatmap_pixel_values=heatmap_pixel_values)
return sample
if __name__ == "__main__":
from util import save_videos_grid
dataset = WebVid10M(
video_folder = "/mmu-ocr/weijiawu/MovieDiffusion/svd-temporal-controlnet/data/ref-youtube-vos/train/JPEGImages",
ann_folder = "/mmu-ocr/weijiawu/MovieDiffusion/svd-temporal-controlnet/data/ref-youtube-vos/train/Annotations",
motion_folder = "",
sample_size=256,
sample_stride=1, sample_n_frames=16
)
# import pdb
# pdb.set_trace()
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, num_workers=16,)
for idx, batch in enumerate(dataloader):
images = ((batch["pixel_values"][0].permute(0,2,3,1)+1)/2)*255
masks = batch["depth_pixel_values"][0].permute(0,2,3,1)*255
heatmaps = batch["heatmap_pixel_values"][0].permute(0,2,3,1)
# center_coordinates = batch["center_coordinates"]
print(batch["pixel_values"].shape)
for i in range(images.shape[0]):
image = images[i].numpy().astype(np.uint8)
mask = masks[i].numpy()
heatmap = heatmaps[i].numpy()
# center_coordinate = center_coordinates[i][0][:2].numpy().astype(np.uint8)
# print(mask.shape)
# print(center_coordinate)
# mask[center_coordinate[0]:center_coordinate[0]+10,center_coordinate[1]:center_coordinate[1]+10]=125
print(np.unique(mask))
cv2.imwrite("./vis/image_{}.jpg".format(i), image)
cv2.imwrite("./vis/mask_{}.jpg".format(i), mask.astype(np.uint8))
cv2.imwrite("./vis/heatmap_{}.jpg".format(i), heatmap.astype(np.uint8))
cv2.imwrite("./vis/{}.jpg".format(i), heatmap.astype(np.uint8)*0.5+image*0.5)
# save_videos_grid(batch["pixel_values"][i:i+1].permute(0,2,1,3,4), os.path.join(".", f"{idx}-{i}.mp4"), rescale=True)
break