Rename app_old.py to app_R.py
Browse files- app_old.py → app_R.py +20 -103
app_old.py → app_R.py
RENAMED
@@ -1,79 +1,21 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
-
# """
|
5 |
-
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
# """
|
7 |
-
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
# def respond(
|
11 |
-
# message,
|
12 |
-
# history: list[tuple[str, str]],
|
13 |
-
# system_message,
|
14 |
-
# max_tokens,
|
15 |
-
# temperature,
|
16 |
-
# top_p,
|
17 |
-
# ):
|
18 |
-
# messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
# for val in history:
|
21 |
-
# if val[0]:
|
22 |
-
# messages.append({"role": "user", "content": val[0]})
|
23 |
-
# if val[1]:
|
24 |
-
# messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
# messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
# response = ""
|
29 |
-
|
30 |
-
# for message in client.chat_completion(
|
31 |
-
# messages,
|
32 |
-
# max_tokens=max_tokens,
|
33 |
-
# stream=True,
|
34 |
-
# temperature=temperature,
|
35 |
-
# top_p=top_p,
|
36 |
-
# ):
|
37 |
-
# token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
# response += token
|
40 |
-
# yield response
|
41 |
-
|
42 |
-
# """
|
43 |
-
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
# """
|
45 |
-
# demo = gr.ChatInterface(
|
46 |
-
# respond,
|
47 |
-
# additional_inputs=[
|
48 |
-
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
# gr.Slider(
|
52 |
-
# minimum=0.1,
|
53 |
-
# maximum=1.0,
|
54 |
-
# value=0.95,
|
55 |
-
# step=0.05,
|
56 |
-
# label="Top-p (nucleus sampling)",
|
57 |
-
# ),
|
58 |
-
# ],
|
59 |
-
# )
|
60 |
-
|
61 |
-
|
62 |
-
# if __name__ == "__main__":
|
63 |
-
# demo.launch()
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
import gradio as gr
|
69 |
import torch
|
70 |
-
from transformers import RagRetriever, RagSequenceForGeneration
|
71 |
|
72 |
-
|
73 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
74 |
-
"""
|
75 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
def strip_title(title):
|
78 |
if title.startswith('"'):
|
79 |
title = title[1:]
|
@@ -81,7 +23,7 @@ def strip_title(title):
|
|
81 |
title = title[:-1]
|
82 |
return title
|
83 |
|
84 |
-
def retrieved_info(
|
85 |
# Tokenize query
|
86 |
retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
|
87 |
[query],
|
@@ -109,16 +51,11 @@ def retrieved_info(rag_model, query):
|
|
109 |
titles = [strip_title(title) for title in docs["title"]]
|
110 |
texts = docs["text"]
|
111 |
for title, text in zip(titles, texts):
|
112 |
-
#print(f"Title: {title}")
|
113 |
-
#print(f"Context: {text}")
|
114 |
retrieved_context.append(f"{title}: {text}")
|
115 |
|
116 |
answer = retrieved_context
|
117 |
return answer
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
def respond(
|
123 |
message,
|
124 |
history: list[tuple[str, str]],
|
@@ -127,21 +64,7 @@ def respond(
|
|
127 |
temperature,
|
128 |
top_p,
|
129 |
):
|
130 |
-
|
131 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
132 |
-
|
133 |
-
dataset_path = "./sample/my_knowledge_dataset"
|
134 |
-
index_path = "./sample/my_knowledge_dataset_hnsw_index.faiss"
|
135 |
-
|
136 |
-
tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
137 |
-
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
|
138 |
-
passages_path = dataset_path,
|
139 |
-
index_path = index_path,
|
140 |
-
n_docs = 5)
|
141 |
-
rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
|
142 |
-
rag_model.retriever.init_retrieval()
|
143 |
-
rag_model.to(device)
|
144 |
-
|
145 |
if message: # If there's a user query
|
146 |
response = retrieved_info(rag_model, message) # Get the answer from your local FAISS and Q&A model
|
147 |
return response[0]
|
@@ -150,22 +73,16 @@ def respond(
|
|
150 |
return ""
|
151 |
|
152 |
|
153 |
-
|
154 |
-
"""
|
155 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
156 |
-
"""
|
157 |
# Custom title and description
|
158 |
title = "🧠 Welcome to Your AI Knowledge Assistant"
|
159 |
description = """
|
160 |
-
HI!!, I am
|
161 |
-
My capabilities
|
162 |
-
from my knowledge-base but, right now, I am limited to less than 1000 files. LET'S BEGGINNNN......
|
163 |
"""
|
164 |
|
165 |
demo = gr.ChatInterface(
|
166 |
respond,
|
167 |
type = 'messages',
|
168 |
-
submit_btn = True,
|
169 |
additional_inputs=[
|
170 |
gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
|
171 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
@@ -180,12 +97,12 @@ demo = gr.ChatInterface(
|
|
180 |
],
|
181 |
title=title,
|
182 |
description=description,
|
|
|
183 |
textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
|
184 |
examples=[["✨Future of AI"], ["📱App Development"]],
|
185 |
-
example_icons=["🤖", "📱"],
|
186 |
theme="compact",
|
187 |
)
|
188 |
|
189 |
-
|
190 |
if __name__ == "__main__":
|
191 |
-
demo.launch(share = True )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import RagRetriever, RagSequenceForGeneration
|
4 |
|
5 |
+
# Load model
|
|
|
|
|
6 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
|
8 |
+
dataset_path = "./sample/my_knowledge_dataset"
|
9 |
+
index_path = "./sample/my_knowledge_dataset_hnsw_index.faiss"
|
10 |
+
|
11 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
|
12 |
+
passages_path = dataset_path,
|
13 |
+
index_path = index_path,
|
14 |
+
n_docs = 5)
|
15 |
+
rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
|
16 |
+
rag_model.retriever.init_retrieval()
|
17 |
+
rag_model.to(device)
|
18 |
+
|
19 |
def strip_title(title):
|
20 |
if title.startswith('"'):
|
21 |
title = title[1:]
|
|
|
23 |
title = title[:-1]
|
24 |
return title
|
25 |
|
26 |
+
def retrieved_info(query, rag_model = rag_model):
|
27 |
# Tokenize query
|
28 |
retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
|
29 |
[query],
|
|
|
51 |
titles = [strip_title(title) for title in docs["title"]]
|
52 |
texts = docs["text"]
|
53 |
for title, text in zip(titles, texts):
|
|
|
|
|
54 |
retrieved_context.append(f"{title}: {text}")
|
55 |
|
56 |
answer = retrieved_context
|
57 |
return answer
|
58 |
|
|
|
|
|
|
|
59 |
def respond(
|
60 |
message,
|
61 |
history: list[tuple[str, str]],
|
|
|
64 |
temperature,
|
65 |
top_p,
|
66 |
):
|
67 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
if message: # If there's a user query
|
69 |
response = retrieved_info(rag_model, message) # Get the answer from your local FAISS and Q&A model
|
70 |
return response[0]
|
|
|
73 |
return ""
|
74 |
|
75 |
|
|
|
|
|
|
|
|
|
76 |
# Custom title and description
|
77 |
title = "🧠 Welcome to Your AI Knowledge Assistant"
|
78 |
description = """
|
79 |
+
HI!!, I am your loyal assistant, My functionality is based on RAG model, I retrieves relevant information and provide answers based on that. Ask me any question, and let me assist you.
|
80 |
+
My capabilities are limited because I am still in development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN......
|
|
|
81 |
"""
|
82 |
|
83 |
demo = gr.ChatInterface(
|
84 |
respond,
|
85 |
type = 'messages',
|
|
|
86 |
additional_inputs=[
|
87 |
gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
|
88 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
|
|
97 |
],
|
98 |
title=title,
|
99 |
description=description,
|
100 |
+
submit_btn = True,
|
101 |
textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
|
102 |
examples=[["✨Future of AI"], ["📱App Development"]],
|
103 |
+
#example_icons=["🤖", "📱"],
|
104 |
theme="compact",
|
105 |
)
|
106 |
|
|
|
107 |
if __name__ == "__main__":
|
108 |
+
demo.launch(share = True )
|