import torch import transformers from transformers import RagRetriever, RagSequenceForGeneration, AutoModelForCausalLM, pipeline import gradio as gr device = 'cuda' if torch.cuda.is_available() else 'cpu' dataset_path = "./5k_index_data/my_knowledge_dataset" index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss" retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom", passages_path = dataset_path, index_path = index_path, n_docs = 5) rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever) rag_model.retriever.init_retrieval() rag_model.to(device) pipe = pipeline( "text-generation", model="google/gemma-2-2b-it", model_kwargs={"torch_dtype": torch.bfloat16}, device=device, ) def strip_title(title): if title.startswith('"'): title = title[1:] if title.endswith('"'): title = title[:-1] return title def retrieved_info(query, rag_model = rag_model): # Tokenize Query retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( [query], return_tensors = 'pt', padding = True, truncation = True, )['input_ids'].to(device) # Retrieve Documents question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids) question_encoder_pool_output = question_encoder_output[0] result = rag_model.retriever( retriever_input_ids, question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(), prefix = rag_model.rag.generator.config.prefix, n_docs = rag_model.config.n_docs, return_tensors = 'pt', ) # Preparing query and retrieved docs for model all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids) retrieved_context = [] for docs in all_docs: titles = [strip_title(title) for title in docs['title']] texts = docs['text'] for title, text in zip(titles, texts): retrieved_context.append(f'{title}: {text}') # Generating answer using gemma model messages = [ {"role": "user", "content": f"{query}"}, {"role": "system" , "content": f"Context: {retrieved_context}. Use the links and information from the Context to answer the query in brief. Provide links in the answer."} ] outputs = pipe(messages, max_new_tokens=256) assistant_response = outputs[0]["generated_text"][-1]["content"].strip() return assistant_response def respond( message, history: list[tuple[str, str]], system_message, max_tokens , temperature, top_p, ): if message: # If there's a user query response = retrieved_info(message) # Get the answer from your local FAISS and Q&A model return response # In case no message, return an empty string return "" """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ # Custom title and description title = "🧠 Welcome to Your AI Knowledge Assistant" description = """ HI!!, I am your loyal assistant, y functionality is based on RAG model, I retrieves relevant information and provide answers based on that. Ask me any question, and let me assist you. My capabilities are limited because I am still in development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN...... """ demo = gr.ChatInterface( respond, type = 'messages', additional_inputs=[ gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], title=title, description=description, submit_btn = True, textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]), examples=[["Future of AI"], ["App Development"]], theme="compact", ) if __name__ == "__main__": demo.launch(share = True )