import json import os import shutil import requests import gradio as gr from huggingface_hub import Repository, InferenceClient HF_TOKEN = os.environ.get("HF_TOKEN", None) USER_NAME = os.environ.get("USER_NAME", None) APP_PASSWORD = os.environ.get("APP_PASSWORD", None) # Define the model URL using the model_name model_url = 'https://api-inference.huggingface.co/models/google/flan-t5-small' # Create the InferenceClient client = InferenceClient(model_url, headers={"Authorization": f"Bearer {HF_TOKEN}"}) STOP_SEQUENCES = ["\nUser:", "<|endoftext|>", " User:", "###"] EXAMPLES = [ ["Please explain me about machine learning"], ["Do you know about python programming? Please create simple application for me."], ["What is the history of AI?"], ["Can you tell me more about Data Science?"], ["Can you write a short tweet about the release of our latest AI model, Falcon 180B LLM?"] ] def format_prompt(message, history, system_prompt): prompt = "" if system_prompt: prompt += f"System: {system_prompt}\n" for user_prompt, bot_response in history: prompt += f"User: {user_prompt}\n" prompt += f"GuruAI: {bot_response}\n" # Response already contains "GuruAI: " prompt += f"""User: {message} GuruAI:""" return prompt seed = 42 def generate( prompt, history, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) global seed generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, stop_sequences=STOP_SEQUENCES, do_sample=True, seed=seed, ) seed = seed + 1 formatted_prompt = format_prompt(prompt, history, system_prompt) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text for stop_str in STOP_SEQUENCES: if output.endswith(stop_str): output = output[:-len(stop_str)] output = output.rstrip() yield output yield output return output additional_inputs=[ gr.Textbox("", label="Optional system prompt"), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=1088, minimum=0, maximum=8192, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=0.4): gr.Image("https://padek.jawapos.com/wp-content/uploads/2022/10/861213472.jpg", elem_id="banner-image", show_label=False) with gr.Column(): gr.Markdown( """ # GuruAI This is AI as Teacher, It will teach you about anything. ⚠️ **Limitations**: the model can and will produce factually incorrect information, hallucinating facts and actions. As it has not undergone any advanced tuning/alignment, it can produce problematic outputs, especially if prompted to do so. Finally, this demo is limited to a session length of about 1,000 words. Example: Model Name = "tiiuae/falcon-180B-chat" """ ) gr.ChatInterface( generate, examples=EXAMPLES, additional_inputs=additional_inputs, ) demo.queue(concurrency_count=100, api_open=True).launch(show_api=True, auth=(USER_NAME, APP_PASSWORD))