File size: 10,281 Bytes
17b7b6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import numpy as np
import random
import torch
import torch.nn as nn

from models.common import Conv, DWConv
from utils.google_utils import attempt_download


class CrossConv(nn.Module):
    # Cross Convolution Downsample
    def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
        # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
        super(CrossConv, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, (1, k), (1, s))
        self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class Sum(nn.Module):
    # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
    def __init__(self, n, weight=False):  # n: number of inputs
        super(Sum, self).__init__()
        self.weight = weight  # apply weights boolean
        self.iter = range(n - 1)  # iter object
        if weight:
            self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True)  # layer weights

    def forward(self, x):
        y = x[0]  # no weight
        if self.weight:
            w = torch.sigmoid(self.w) * 2
            for i in self.iter:
                y = y + x[i + 1] * w[i]
        else:
            for i in self.iter:
                y = y + x[i + 1]
        return y


class MixConv2d(nn.Module):
    # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
    def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
        super(MixConv2d, self).__init__()
        groups = len(k)
        if equal_ch:  # equal c_ per group
            i = torch.linspace(0, groups - 1E-6, c2).floor()  # c2 indices
            c_ = [(i == g).sum() for g in range(groups)]  # intermediate channels
        else:  # equal weight.numel() per group
            b = [c2] + [0] * groups
            a = np.eye(groups + 1, groups, k=-1)
            a -= np.roll(a, 1, axis=1)
            a *= np.array(k) ** 2
            a[0] = 1
            c_ = np.linalg.lstsq(a, b, rcond=None)[0].round()  # solve for equal weight indices, ax = b

        self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.LeakyReLU(0.1, inplace=True)

    def forward(self, x):
        return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))


class Ensemble(nn.ModuleList):
    # Ensemble of models
    def __init__(self):
        super(Ensemble, self).__init__()

    def forward(self, x, augment=False):
        y = []
        for module in self:
            y.append(module(x, augment)[0])
        # y = torch.stack(y).max(0)[0]  # max ensemble
        # y = torch.stack(y).mean(0)  # mean ensemble
        y = torch.cat(y, 1)  # nms ensemble
        return y, None  # inference, train output





class ORT_NMS(torch.autograd.Function):
    '''ONNX-Runtime NMS operation'''
    @staticmethod
    def forward(ctx,
                boxes,
                scores,
                max_output_boxes_per_class=torch.tensor([100]),
                iou_threshold=torch.tensor([0.45]),
                score_threshold=torch.tensor([0.25])):
        device = boxes.device
        batch = scores.shape[0]
        num_det = random.randint(0, 100)
        batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device)
        idxs = torch.arange(100, 100 + num_det).to(device)
        zeros = torch.zeros((num_det,), dtype=torch.int64).to(device)
        selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous()
        selected_indices = selected_indices.to(torch.int64)
        return selected_indices

    @staticmethod
    def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold):
        return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold)


class TRT_NMS(torch.autograd.Function):
    '''TensorRT NMS operation'''
    @staticmethod
    def forward(
        ctx,
        boxes,
        scores,
        background_class=-1,
        box_coding=1,
        iou_threshold=0.45,
        max_output_boxes=100,
        plugin_version="1",
        score_activation=0,
        score_threshold=0.25,
    ):
        batch_size, num_boxes, num_classes = scores.shape
        num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
        det_boxes = torch.randn(batch_size, max_output_boxes, 4)
        det_scores = torch.randn(batch_size, max_output_boxes)
        det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
        return num_det, det_boxes, det_scores, det_classes

    @staticmethod
    def symbolic(g,
                 boxes,
                 scores,
                 background_class=-1,
                 box_coding=1,
                 iou_threshold=0.45,
                 max_output_boxes=100,
                 plugin_version="1",
                 score_activation=0,
                 score_threshold=0.25):
        out = g.op("TRT::EfficientNMS_TRT",
                   boxes,
                   scores,
                   background_class_i=background_class,
                   box_coding_i=box_coding,
                   iou_threshold_f=iou_threshold,
                   max_output_boxes_i=max_output_boxes,
                   plugin_version_s=plugin_version,
                   score_activation_i=score_activation,
                   score_threshold_f=score_threshold,
                   outputs=4)
        nums, boxes, scores, classes = out
        return nums, boxes, scores, classes


class ONNX_ORT(nn.Module):
    '''onnx module with ONNX-Runtime NMS operation.'''
    def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None):
        super().__init__()
        self.device = device if device else torch.device("cpu")
        self.max_obj = torch.tensor([max_obj]).to(device)
        self.iou_threshold = torch.tensor([iou_thres]).to(device)
        self.score_threshold = torch.tensor([score_thres]).to(device)
        self.max_wh = max_wh # if max_wh != 0 : non-agnostic else : agnostic
        self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
                                           dtype=torch.float32,
                                           device=self.device)

    def forward(self, x):
        boxes = x[:, :, :4]
        conf = x[:, :, 4:5]
        scores = x[:, :, 5:]
        scores *= conf
        boxes @= self.convert_matrix
        max_score, category_id = scores.max(2, keepdim=True)
        dis = category_id.float() * self.max_wh
        nmsbox = boxes + dis
        max_score_tp = max_score.transpose(1, 2).contiguous()
        selected_indices = ORT_NMS.apply(nmsbox, max_score_tp, self.max_obj, self.iou_threshold, self.score_threshold)
        X, Y = selected_indices[:, 0], selected_indices[:, 2]
        selected_boxes = boxes[X, Y, :]
        selected_categories = category_id[X, Y, :].float()
        selected_scores = max_score[X, Y, :]
        X = X.unsqueeze(1).float()
        return torch.cat([X, selected_boxes, selected_categories, selected_scores], 1)

class ONNX_TRT(nn.Module):
    '''onnx module with TensorRT NMS operation.'''
    def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None):
        super().__init__()
        assert max_wh is None
        self.device = device if device else torch.device('cpu')
        self.background_class = -1,
        self.box_coding = 1,
        self.iou_threshold = iou_thres
        self.max_obj = max_obj
        self.plugin_version = '1'
        self.score_activation = 0
        self.score_threshold = score_thres

    def forward(self, x):
        boxes = x[:, :, :4]
        conf = x[:, :, 4:5]
        scores = x[:, :, 5:]
        scores *= conf
        num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(boxes, scores, self.background_class, self.box_coding,
                                                                    self.iou_threshold, self.max_obj,
                                                                    self.plugin_version, self.score_activation,
                                                                    self.score_threshold)
        return num_det, det_boxes, det_scores, det_classes


class End2End(nn.Module):
    '''export onnx or tensorrt model with NMS operation.'''
    def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None):
        super().__init__()
        device = device if device else torch.device('cpu')
        assert isinstance(max_wh,(int)) or max_wh is None
        self.model = model.to(device)
        self.model.model[-1].end2end = True
        self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT
        self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device)
        self.end2end.eval()

    def forward(self, x):
        x = self.model(x)
        x = self.end2end(x)
        return x





def attempt_load(weights, map_location=None):
    # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
    model = Ensemble()
    for w in weights if isinstance(weights, list) else [weights]:
        attempt_download(w)
        ckpt = torch.load(w, map_location=map_location)  # load
        model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval())  # FP32 model
    
    # Compatibility updates
    for m in model.modules():
        if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
            m.inplace = True  # pytorch 1.7.0 compatibility
        elif type(m) is nn.Upsample:
            m.recompute_scale_factor = None  # torch 1.11.0 compatibility
        elif type(m) is Conv:
            m._non_persistent_buffers_set = set()  # pytorch 1.6.0 compatibility
    
    if len(model) == 1:
        return model[-1]  # return model
    else:
        print('Ensemble created with %s\n' % weights)
        for k in ['names', 'stride']:
            setattr(model, k, getattr(model[-1], k))
        return model  # return ensemble