Spaces:
Runtime error
Runtime error
import numpy as np | |
import onnx | |
from onnx import shape_inference | |
try: | |
import onnx_graphsurgeon as gs | |
except Exception as e: | |
print('Import onnx_graphsurgeon failure: %s' % e) | |
import logging | |
LOGGER = logging.getLogger(__name__) | |
class RegisterNMS(object): | |
def __init__( | |
self, | |
onnx_model_path: str, | |
precision: str = "fp32", | |
): | |
self.graph = gs.import_onnx(onnx.load(onnx_model_path)) | |
assert self.graph | |
LOGGER.info("ONNX graph created successfully") | |
# Fold constants via ONNX-GS that PyTorch2ONNX may have missed | |
self.graph.fold_constants() | |
self.precision = precision | |
self.batch_size = 1 | |
def infer(self): | |
""" | |
Sanitize the graph by cleaning any unconnected nodes, do a topological resort, | |
and fold constant inputs values. When possible, run shape inference on the | |
ONNX graph to determine tensor shapes. | |
""" | |
for _ in range(3): | |
count_before = len(self.graph.nodes) | |
self.graph.cleanup().toposort() | |
try: | |
for node in self.graph.nodes: | |
for o in node.outputs: | |
o.shape = None | |
model = gs.export_onnx(self.graph) | |
model = shape_inference.infer_shapes(model) | |
self.graph = gs.import_onnx(model) | |
except Exception as e: | |
LOGGER.info(f"Shape inference could not be performed at this time:\n{e}") | |
try: | |
self.graph.fold_constants(fold_shapes=True) | |
except TypeError as e: | |
LOGGER.error( | |
"This version of ONNX GraphSurgeon does not support folding shapes, " | |
f"please upgrade your onnx_graphsurgeon module. Error:\n{e}" | |
) | |
raise | |
count_after = len(self.graph.nodes) | |
if count_before == count_after: | |
# No new folding occurred in this iteration, so we can stop for now. | |
break | |
def save(self, output_path): | |
""" | |
Save the ONNX model to the given location. | |
Args: | |
output_path: Path pointing to the location where to write | |
out the updated ONNX model. | |
""" | |
self.graph.cleanup().toposort() | |
model = gs.export_onnx(self.graph) | |
onnx.save(model, output_path) | |
LOGGER.info(f"Saved ONNX model to {output_path}") | |
def register_nms( | |
self, | |
*, | |
score_thresh: float = 0.25, | |
nms_thresh: float = 0.45, | |
detections_per_img: int = 100, | |
): | |
""" | |
Register the ``EfficientNMS_TRT`` plugin node. | |
NMS expects these shapes for its input tensors: | |
- box_net: [batch_size, number_boxes, 4] | |
- class_net: [batch_size, number_boxes, number_labels] | |
Args: | |
score_thresh (float): The scalar threshold for score (low scoring boxes are removed). | |
nms_thresh (float): The scalar threshold for IOU (new boxes that have high IOU | |
overlap with previously selected boxes are removed). | |
detections_per_img (int): Number of best detections to keep after NMS. | |
""" | |
self.infer() | |
# Find the concat node at the end of the network | |
op_inputs = self.graph.outputs | |
op = "EfficientNMS_TRT" | |
attrs = { | |
"plugin_version": "1", | |
"background_class": -1, # no background class | |
"max_output_boxes": detections_per_img, | |
"score_threshold": score_thresh, | |
"iou_threshold": nms_thresh, | |
"score_activation": False, | |
"box_coding": 0, | |
} | |
if self.precision == "fp32": | |
dtype_output = np.float32 | |
elif self.precision == "fp16": | |
dtype_output = np.float16 | |
else: | |
raise NotImplementedError(f"Currently not supports precision: {self.precision}") | |
# NMS Outputs | |
output_num_detections = gs.Variable( | |
name="num_dets", | |
dtype=np.int32, | |
shape=[self.batch_size, 1], | |
) # A scalar indicating the number of valid detections per batch image. | |
output_boxes = gs.Variable( | |
name="det_boxes", | |
dtype=dtype_output, | |
shape=[self.batch_size, detections_per_img, 4], | |
) | |
output_scores = gs.Variable( | |
name="det_scores", | |
dtype=dtype_output, | |
shape=[self.batch_size, detections_per_img], | |
) | |
output_labels = gs.Variable( | |
name="det_classes", | |
dtype=np.int32, | |
shape=[self.batch_size, detections_per_img], | |
) | |
op_outputs = [output_num_detections, output_boxes, output_scores, output_labels] | |
# Create the NMS Plugin node with the selected inputs. The outputs of the node will also | |
# become the final outputs of the graph. | |
self.graph.layer(op=op, name="batched_nms", inputs=op_inputs, outputs=op_outputs, attrs=attrs) | |
LOGGER.info(f"Created NMS plugin '{op}' with attributes: {attrs}") | |
self.graph.outputs = op_outputs | |
self.infer() | |
def save(self, output_path): | |
""" | |
Save the ONNX model to the given location. | |
Args: | |
output_path: Path pointing to the location where to write | |
out the updated ONNX model. | |
""" | |
self.graph.cleanup().toposort() | |
model = gs.export_onnx(self.graph) | |
onnx.save(model, output_path) | |
LOGGER.info(f"Saved ONNX model to {output_path}") | |