File size: 1,326 Bytes
322d295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from moviepy.editor import AudioFileClip
import os
from keras.models import load_model
from Sound2Img import sound_2_Img
from pydub import AudioSegment
from useClahe import applyClahe


class convertWav():
    def __init__(self, video_path, save_path):
        self.video_path = video_path
        self.save_path = save_path


    def convert(self, v_path, s_path, ext):
        AudioFileClip(v_path).write_audiofile(f"{s_path}.{ext}")
        self.convert2Mono(s_path, ext)

    def convert2Mono(self, s_path, ext):
        sound = AudioSegment.from_wav(s_path + '.' + ext)
        sound = sound.set_channels(1)
        sound.export(s_path + '.' + ext, format="wav")

    def beginn(self):
        for i in os.listdir(self.video_path):
            path = self.video_path + i
            save_path_ = save_path + i
            Ext = "wav"
            self.convert(path, save_path_, Ext)


path = "Videos/tr/"
save_path = "Sounds/tr/"
converter = convertWav(path, save_path)
converter.beginn()

# model = load_model("models/CLAHE/148epochCLAHEcallback.h5")
# sound_2_Img(save_path).save_spectrograms()
# print("Spektrogram oluşturuldu!")
#
# applyClahe(save_path + 'images/').apply()
# print("Clahe uygulandı!")

# for i in os.listdir(save_path + 'images/'):
#     model.predict(i)