chatbot / app.py
Beuys's picture
Add application file
253894c
raw
history blame
35.6 kB
import gradio as gr
import shutil
from chains.local_doc_qa import LocalDocQA
from configs.model_config import *
import nltk
import models.shared as shared
from models.loader.args import parser
from models.loader import LoaderCheckPoint
import os
import pandas as pd
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
def get_vs_list():
lst_default = ["python_bot"]
if not os.path.exists(KB_ROOT_PATH):
return lst_default
lst = os.listdir(KB_ROOT_PATH)
if not lst:
return lst_default
lst.sort()
return lst_default + lst
embedding_model_dict_list = list(embedding_model_dict.keys())
llm_model_dict_list = list(llm_model_dict.keys())
local_doc_qa = LocalDocQA()
flag_csv_logger = gr.CSVLogger()
user = "None"
users = [
("wsy", "123456"),
("wdy", "654321"),
("lhj", "123456"),
("hhy", "123456"),
("yl", "123456"),
("hy", "123456"),
]
# mode = "知识库问答"
vs_path = "/home/wsy/Langchain-chat/Langchain-Chatchat/knowledge_base"
def get_answer(query, vs_path, history, mode, score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
vector_search_top_k=VECTOR_SEARCH_TOP_K, chunk_conent: bool = True,
chunk_size=CHUNK_SIZE, streaming: bool = STREAMING):
# if mode == "Bing搜索问答":
# for resp, history in local_doc_qa.get_search_result_based_answer(
# query=query, chat_history=history, streaming=streaming):
# source = "\n\n"
# source += "".join(
# [
# f"""<details> <summary>出处 [{i + 1}] <a href="{doc.metadata["source"]}" target="_blank">{doc.metadata["source"]}</a> </summary>\n"""
# f"""{doc.page_content}\n"""
# f"""</details>"""
# for i, doc in
# enumerate(resp["source_documents"])])
# history[-1][-1] += source
# yield history, ""
if mode == "知识库问答" and vs_path is not None and os.path.exists(vs_path) and "index.faiss" in os.listdir(
vs_path):
for resp, history in local_doc_qa.get_knowledge_based_answer(
query=query, vs_path=vs_path, chat_history=history, streaming=streaming):
source = "\n\n"
source += "".join(
[f"""<details> <summary>出处 [{i + 1}] {os.path.split(doc.metadata["source"])[-1]}</summary>\n"""
f"""{doc.page_content}\n"""
f"""</details>"""
for i, doc in
enumerate(resp["source_documents"])])
history[-1][-1] += source
yield history, ""
# elif mode == "知识库测试":
# if os.path.exists(vs_path):
# resp, prompt = local_doc_qa.get_knowledge_based_conent_test(query=query, vs_path=vs_path,
# score_threshold=score_threshold,
# vector_search_top_k=vector_search_top_k,
# chunk_conent=chunk_conent,
# chunk_size=chunk_size)
# if not resp["source_documents"]:
# yield history + [[query,
# "根据您的设定,没有匹配到任何内容,请确认您设置的知识相关度 Score 阈值是否过小或其他参数是否正确。"]], ""
# else:
# source = "\n".join(
# [
# f"""<details open> <summary>【知识相关度 Score】:{doc.metadata["score"]} - 【出处{i + 1}】: {os.path.split(doc.metadata["source"])[-1]} </summary>\n"""
# f"""{doc.page_content}\n"""
# f"""</details>"""
# for i, doc in
# enumerate(resp["source_documents"])])
# history.append([query, "以下内容为知识库中满足设置条件的匹配结果:\n\n" + source])
# yield history, ""
# else:
# yield history + [[query,
# "请选择知识库后进行测试,当前未选择知识库。"]], ""
else:
answer_result_stream_result = local_doc_qa.llm_model_chain(
{"prompt": query, "history": history, "streaming": streaming})
for answer_result in answer_result_stream_result['answer_result_stream']:
resp = answer_result.llm_output["answer"]
history = answer_result.history
history[-1][-1] = resp
yield history, ""
logger.info(f"flagging: username={user},query={query},vs_path={vs_path},mode={mode},history={history}")
flag_csv_logger.flag([query, vs_path, history, mode], username=user)
def init_model():
args = parser.parse_args()
args_dict = vars(args)
shared.loaderCheckPoint = LoaderCheckPoint(args_dict)
llm_model_ins = shared.loaderLLM()
llm_model_ins.history_len = LLM_HISTORY_LEN
try:
local_doc_qa.init_cfg(llm_model=llm_model_ins)
answer_result_stream_result = local_doc_qa.llm_model_chain(
{"prompt": "你好", "history": [], "streaming": False})
for answer_result in answer_result_stream_result['answer_result_stream']:
print(answer_result.llm_output)
reply = """模型已成功加载,可以开始对话"""
logger.info(reply)
return reply
except Exception as e:
logger.error(e)
reply = """模型未成功加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮"""
if str(e) == "Unknown platform: darwin":
logger.info("该报错可能因为您使用的是 macOS 操作系统,需先下载模型至本地后执行 Web UI,具体方法请参考项目 README 中本地部署方法及常见问题:"
" https://github.com/imClumsyPanda/langchain-ChatGLM")
else:
logger.info(reply)
return reply
def reinit_model(llm_model, embedding_model, llm_history_len, no_remote_model, use_ptuning_v2, use_lora, top_k,
history):
try:
llm_model_ins = shared.loaderLLM(llm_model, no_remote_model, use_ptuning_v2)
llm_model_ins.history_len = llm_history_len
local_doc_qa.init_cfg(llm_model=llm_model_ins,
embedding_model=embedding_model,
top_k=top_k)
model_status = """模型已成功重新加载"""
logger.info(model_status)
except Exception as e:
logger.error(e)
model_status = """模型未成功重新加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮"""
logger.info(model_status)
return history + [[None, model_status]]
def get_vector_store(vs_id, files, sentence_size, history, one_conent, one_content_segmentation):
vs_path = os.path.join(KB_ROOT_PATH, vs_id, "vector_store")
filelist = []
if local_doc_qa.llm_model_chain and local_doc_qa.embeddings:
if isinstance(files, list):
for file in files:
filename = os.path.split(file.name)[-1]
shutil.move(file.name, os.path.join(KB_ROOT_PATH, vs_id, "content", filename))
filelist.append(os.path.join(KB_ROOT_PATH, vs_id, "content", filename))
vs_path, loaded_files = local_doc_qa.init_knowledge_vector_store(filelist, vs_path, sentence_size)
else:
vs_path, loaded_files = local_doc_qa.one_knowledge_add(vs_path, files, one_conent, one_content_segmentation,
sentence_size)
if len(loaded_files):
file_status = f"已添加 {'、'.join([os.path.split(i)[-1] for i in loaded_files if i])} 内容至知识库,并已加载知识库,请开始提问"
else:
file_status = "文件未成功加载,请重新上传文件"
else:
file_status = "模型未完成加载,请先在加载模型后再导入文件"
vs_path = None
logger.info(file_status)
return vs_path, None, history + [[None, file_status]], \
gr.update(choices=local_doc_qa.list_file_from_vector_store(vs_path) if vs_path else [])
def change_vs_name_input(vs_id, history):
if vs_id == "新建知识库":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), None, history, \
gr.update(choices=[]), gr.update(visible=False)
else:
vs_path = os.path.join(KB_ROOT_PATH, vs_id, "vector_store")
if "index.faiss" in os.listdir(vs_path):
file_status = f"已加载知识库{vs_id},请开始提问"
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), \
vs_path, history + [[None, file_status]], \
gr.update(choices=local_doc_qa.list_file_from_vector_store(vs_path), value=[]), \
gr.update(visible=True)
else:
file_status = f"已选择知识库{vs_id},当前知识库中未上传文件,请先上传文件后,再开始提问"
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), \
vs_path, history + [[None, file_status]], \
gr.update(choices=[], value=[]), gr.update(visible=True, value=[])
knowledge_base_test_mode_info = ("【注意】\n\n"
"1. 您已进入知识库测试模式,您输入的任何对话内容都将用于进行知识库查询,"
"并仅输出知识库匹配出的内容及相似度分值和及输入的文本源路径,查询的内容并不会进入模型查询。\n\n"
"2. 知识相关度 Score 经测试,建议设置为 500 或更低,具体设置情况请结合实际使用调整。"
"""3. 使用"添加单条数据"添加文本至知识库时,内容如未分段,则内容越多越会稀释各查询内容与之关联的score阈值。\n\n"""
"4. 单条内容长度建议设置在100-150左右。\n\n"
"5. 本界面用于知识入库及知识匹配相关参数设定,但当前版本中,"
"本界面中修改的参数并不会直接修改对话界面中参数,仍需前往`configs/model_config.py`修改后生效。"
"相关参数将在后续版本中支持本界面直接修改。")
def change_mode(mode, history):
if mode == "知识库问答":
return gr.update(visible=True), gr.update(visible=False), history
# + [[None, "【注意】:您已进入知识库问答模式,您输入的任何查询都将进行知识库查询,然后会自动整理知识库关联内容进入模型查询!!!"]]
elif mode == "知识库测试":
return gr.update(visible=True), gr.update(visible=True), [[None,
knowledge_base_test_mode_info]]
else:
return gr.update(visible=False), gr.update(visible=False), history
def change_chunk_conent(mode, label_conent, history):
conent = ""
if "chunk_conent" in label_conent:
conent = "搜索结果上下文关联"
elif "one_content_segmentation" in label_conent: # 这里没用上,可以先留着
conent = "内容分段入库"
if mode:
return gr.update(visible=True), history + [[None, f"【已开启{conent}】"]]
else:
return gr.update(visible=False), history + [[None, f"【已关闭{conent}】"]]
def add_vs_name(vs_name, chatbot):
if vs_name is None or vs_name.strip() == "":
vs_status = "知识库名称不能为空,请重新填写知识库名称"
chatbot = chatbot + [[None, vs_status]]
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(
visible=False), chatbot, gr.update(visible=False)
elif vs_name in get_vs_list():
vs_status = "与已有知识库名称冲突,请重新选择其他名称后提交"
chatbot = chatbot + [[None, vs_status]]
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(
visible=False), chatbot, gr.update(visible=False)
else:
# 新建上传文件存储路径
if not os.path.exists(os.path.join(KB_ROOT_PATH, vs_name, "content")):
os.makedirs(os.path.join(KB_ROOT_PATH, vs_name, "content"))
# 新建向量库存储路径
if not os.path.exists(os.path.join(KB_ROOT_PATH, vs_name, "vector_store")):
os.makedirs(os.path.join(KB_ROOT_PATH, vs_name, "vector_store"))
vs_status = f"""已新增知识库"{vs_name}",将在上传文件并载入成功后进行存储。请在开始对话前,先完成文件上传。 """
chatbot = chatbot + [[None, vs_status]]
return gr.update(visible=True, choices=get_vs_list(), value=vs_name), gr.update(
visible=False), gr.update(visible=False), gr.update(visible=True), chatbot, gr.update(visible=True)
# 自动化加载固定文件间中文件
def reinit_vector_store(vs_id, history):
try:
shutil.rmtree(os.path.join(KB_ROOT_PATH, vs_id, "vector_store"))
vs_path = os.path.join(KB_ROOT_PATH, vs_id, "vector_store")
sentence_size = gr.Number(value=SENTENCE_SIZE, precision=0,
label="文本入库分句长度限制",
interactive=True, visible=True)
vs_path, loaded_files = local_doc_qa.init_knowledge_vector_store(os.path.join(KB_ROOT_PATH, vs_id, "content"),
vs_path, sentence_size)
model_status = """知识库构建成功"""
except Exception as e:
logger.error(e)
model_status = """知识库构建未成功"""
logger.info(model_status)
return history + [[None, model_status]]
def refresh_vs_list():
return gr.update(choices=get_vs_list()), gr.update(choices=get_vs_list())
def delete_file(vs_id, files_to_delete, chatbot):
vs_path = os.path.join(KB_ROOT_PATH, vs_id, "vector_store")
content_path = os.path.join(KB_ROOT_PATH, vs_id, "content")
docs_path = [os.path.join(content_path, file) for file in files_to_delete]
status = local_doc_qa.delete_file_from_vector_store(vs_path=vs_path,
filepath=docs_path)
if "fail" not in status:
for doc_path in docs_path:
if os.path.exists(doc_path):
os.remove(doc_path)
rested_files = local_doc_qa.list_file_from_vector_store(vs_path)
if "fail" in status:
vs_status = "文件删除失败。"
elif len(rested_files) > 0:
vs_status = "文件删除成功。"
else:
vs_status = f"文件删除成功,知识库{vs_id}中无已上传文件,请先上传文件后,再开始提问。"
logger.info(",".join(files_to_delete) + vs_status)
chatbot = chatbot + [[None, vs_status]]
return gr.update(choices=local_doc_qa.list_file_from_vector_store(vs_path), value=[]), chatbot
def delete_vs(vs_id, chatbot):
try:
shutil.rmtree(os.path.join(KB_ROOT_PATH, vs_id))
status = f"成功删除知识库{vs_id}"
logger.info(status)
chatbot = chatbot + [[None, status]]
return gr.update(choices=get_vs_list(), value=get_vs_list()[0]), gr.update(visible=True), gr.update(
visible=True), \
gr.update(visible=False), chatbot, gr.update(visible=False)
except Exception as e:
logger.error(e)
status = f"删除知识库{vs_id}失败"
chatbot = chatbot + [[None, status]]
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=True), chatbot, gr.update(visible=True)
block_css = """.importantButton {
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
border: none !important;
}
.importantButton:hover {
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
border: none !important;
}"""
webui_title = """
# 🎉Welcome Python bot🎉
"""
# default_vs = get_vs_list()[0] if len(get_vs_list()) > 1 else "为空"
init_message = f"""欢迎使用 Python bot!
在下侧对话框输入问题后,按下Shift+回车即可换行继续输入,按下回车即可获得回复!
若想询问程序报错相关问题,将报错信息最后的报错原因贴上来即可。
"""
# 初始化消息
model_status = init_model()
default_theme_args = dict(
font=["Source Sans Pro", 'ui-sans-serif', 'system-ui', 'sans-serif'],
font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'],
)
with gr.Blocks(css=block_css, theme=gr.themes.Default(**default_theme_args)) as demo:
vs_path, file_status, model_status = gr.State(
os.path.join(KB_ROOT_PATH, get_vs_list()[0], "vector_store") if len(get_vs_list()) > 1 else ""), gr.State(
""), gr.State(
model_status)
gr.Markdown(webui_title)
with gr.Tab("对话"):
with gr.Row():
with gr.Column(scale=10):
chatbot = gr.Chatbot([[None, init_message], [None, model_status.value]],
elem_id="chat-box",
show_label=False).style(height=750)
query = gr.Textbox(show_label=False,
placeholder="请输入提问内容,按回车进行提交").style(container=False)
# with gr.Column(scale=5):
mode = gr.Radio(["知识库问答"],
show_label=False,
value="知识库问答" )
# knowledge_set = gr.Accordion("知识库设定", visible=False)
# vs_setting = gr.Accordion("配置知识库")
# mode.change(fn=change_mode,
# inputs=[mode, chatbot],
# outputs=[vs_setting, knowledge_set, chatbot])
# with vs_setting:
# vs_refresh = gr.Button("更新已有知识库选项")
# select_vs = gr.Dropdown(get_vs_list(),
# label="请选择要加载的知识库",
# interactive=True,
# value=get_vs_list()[0] if len(get_vs_list()) > 0 else None
# )
# vs_name = gr.Textbox(label="请输入新建知识库名称,当前知识库命名暂不支持中文",
# lines=1,
# interactive=True,
# visible=True)
# vs_add = gr.Button(value="添加至知识库选项", visible=True)
# vs_delete = gr.Button("删除本知识库", visible=False)
# file2vs = gr.Column(visible=False)
# with file2vs:
# load_vs = gr.Button("加载知识库")
# gr.Markdown("向知识库中添加文件")
# sentence_size = gr.Number(value=SENTENCE_SIZE, precision=0,
# label="文本入库分句长度限制",
# interactive=True, visible=True)
# with gr.Tab("上传文件"):
# files = gr.File(label="添加文件",
# file_types=['.txt', '.md', '.docx', '.pdf', '.png', '.jpg', ".csv"],
# file_count="multiple",
# show_label=False)
# load_file_button = gr.Button("上传文件并加载知识库")
# with gr.Tab("上传文件夹"):
# folder_files = gr.File(label="添加文件",
# file_count="directory",
# show_label=False)
# load_folder_button = gr.Button("上传文件夹并加载知识库")
# with gr.Tab("删除文件"):
# files_to_delete = gr.CheckboxGroup(choices=[],
# label="请从知识库已有文件中选择要删除的文件",
# interactive=True)
# delete_file_button = gr.Button("从知识库中删除选中文件")
# vs_refresh.click(fn=refresh_vs_list,
# inputs=[],
# outputs=select_vs)
# vs_add.click(fn=add_vs_name,
# inputs=[vs_name, chatbot],
# outputs=[select_vs, vs_name, vs_add, file2vs, chatbot, vs_delete])
# vs_delete.click(fn=delete_vs,
# inputs=[select_vs, chatbot],
# outputs=[select_vs, vs_name, vs_add, file2vs, chatbot, vs_delete])
# select_vs.change(fn=change_vs_name_input,
# inputs=[select_vs, chatbot],
# outputs=[vs_name, file2vs, vs_path, chatbot])
# load_file_button.click(get_vector_store,
# show_progress=True,
# inputs=[select_vs, files, sentence_size, chatbot],
# outputs=[vs_path, files, chatbot, files_to_delete], )
# load_folder_button.click(get_vector_store,
# show_progress=True,
# inputs=[select_vs, folder_files, sentence_size, chatbot, vs_add,
# vs_add],
# outputs=[vs_path, folder_files, chatbot, files_to_delete], )
flag_csv_logger.setup([query, vs_path, chatbot, mode], "student_log")
query.submit(get_answer,
[query, vs_path, chatbot, mode],
[chatbot, query])
# delete_file_button.click(delete_file,
# show_progress=True,
# inputs=[select_vs, files_to_delete, chatbot],
# outputs=[files_to_delete, chatbot])
# with gr.Tab("知识库测试 Beta"):
# with gr.Row():
# with gr.Column(scale=10):
# chatbot = gr.Chatbot([[None, knowledge_base_test_mode_info]],
# elem_id="chat-box",
# show_label=False).style(height=750)
# query = gr.Textbox(show_label=False,
# placeholder="请输入提问内容,按回车进行提交").style(container=False)
# with gr.Column(scale=5):
# mode = gr.Radio(["知识库测试"], # "知识库问答",
# label="请选择使用模式",
# value="知识库测试",
# visible=False)
# knowledge_set = gr.Accordion("知识库设定", visible=True)
# vs_setting = gr.Accordion("配置知识库", visible=True)
# mode.change(fn=change_mode,
# inputs=[mode, chatbot],
# outputs=[vs_setting, knowledge_set, chatbot])
# with knowledge_set:
# score_threshold = gr.Number(value=VECTOR_SEARCH_SCORE_THRESHOLD,
# label="知识相关度 Score 阈值,分值越低匹配度越高",
# precision=0,
# interactive=True)
# vector_search_top_k = gr.Number(value=VECTOR_SEARCH_TOP_K, precision=0,
# label="获取知识库内容条数", interactive=True)
# chunk_conent = gr.Checkbox(value=False,
# label="是否启用上下文关联",
# interactive=True)
# chunk_sizes = gr.Number(value=CHUNK_SIZE, precision=0,
# label="匹配单段内容的连接上下文后最大长度",
# interactive=True, visible=False)
# chunk_conent.change(fn=change_chunk_conent,
# inputs=[chunk_conent, gr.Textbox(value="chunk_conent", visible=False), chatbot],
# outputs=[chunk_sizes, chatbot])
# with vs_setting:
# vs_refresh = gr.Button("更新已有知识库选项")
# select_vs_test = gr.Dropdown(get_vs_list(),
# label="请选择要加载的知识库",
# interactive=True,
# value=get_vs_list()[0] if len(get_vs_list()) > 0 else None)
# vs_name = gr.Textbox(label="请输入新建知识库名称,当前知识库命名暂不支持中文",
# lines=1,
# interactive=True,
# visible=True)
# vs_add = gr.Button(value="添加至知识库选项", visible=True)
# file2vs = gr.Column(visible=False)
# with file2vs:
# # load_vs = gr.Button("加载知识库")
# gr.Markdown("向知识库中添加单条内容或文件")
# sentence_size = gr.Number(value=SENTENCE_SIZE, precision=0,
# label="文本入库分句长度限制",
# interactive=True, visible=True)
# with gr.Tab("上传文件"):
# files = gr.File(label="添加文件",
# file_types=['.txt', '.md', '.docx', '.pdf'],
# file_count="multiple",
# show_label=False
# )
# load_file_button = gr.Button("上传文件并加载知识库")
# with gr.Tab("上传文件夹"):
# folder_files = gr.File(label="添加文件",
# # file_types=['.txt', '.md', '.docx', '.pdf'],
# file_count="directory",
# show_label=False)
# load_folder_button = gr.Button("上传文件夹并加载知识库")
# with gr.Tab("添加单条内容"):
# one_title = gr.Textbox(label="标题", placeholder="请输入要添加单条段落的标题", lines=1)
# one_conent = gr.Textbox(label="内容", placeholder="请输入要添加单条段落的内容", lines=5)
# one_content_segmentation = gr.Checkbox(value=True, label="禁止内容分句入库",
# interactive=True)
# load_conent_button = gr.Button("添加内容并加载知识库")
# # 将上传的文件保存到content文件夹下,并更新下拉框
# vs_refresh.click(fn=refresh_vs_list,
# inputs=[],
# outputs=[select_vs, select_vs_test])
# vs_add.click(fn=add_vs_name,
# inputs=[vs_name, chatbot],
# outputs=[select_vs_test, vs_name, vs_add, file2vs, chatbot])
# select_vs_test.change(fn=change_vs_name_input,
# inputs=[select_vs_test, chatbot],
# outputs=[vs_name, vs_add, file2vs, vs_path, chatbot])
# load_file_button.click(get_vector_store,
# show_progress=True,
# inputs=[select_vs_test, files, sentence_size, chatbot, vs_add, vs_add],
# outputs=[vs_path, files, chatbot], )
# load_folder_button.click(get_vector_store,
# show_progress=True,
# inputs=[select_vs_test, folder_files, sentence_size, chatbot, vs_add,
# vs_add],
# outputs=[vs_path, folder_files, chatbot], )
# load_conent_button.click(get_vector_store,
# show_progress=True,
# inputs=[select_vs_test, one_title, sentence_size, chatbot,
# one_conent, one_content_segmentation],
# outputs=[vs_path, files, chatbot], )
# flag_csv_logger.setup([query, vs_path, chatbot, mode], "flagged")
# query.submit(get_answer,
# [query, vs_path, chatbot, mode, score_threshold, vector_search_top_k, chunk_conent,
# chunk_sizes],
# [chatbot, query])
# with gr.Tab("模型配置"):
# llm_model = gr.Radio(llm_model_dict_list,
# label="LLM 模型",
# value=LLM_MODEL,
# interactive=True)
# no_remote_model = gr.Checkbox(shared.LoaderCheckPoint.no_remote_model,
# label="加载本地模型",
# interactive=True)
# llm_history_len = gr.Slider(0, 10,
# value=LLM_HISTORY_LEN,
# step=1,
# label="LLM 对话轮数",
# interactive=True)
# use_ptuning_v2 = gr.Checkbox(USE_PTUNING_V2,
# label="使用p-tuning-v2微调过的模型",
# interactive=True)
# use_lora = gr.Checkbox(USE_LORA,
# label="使用lora微调的权重",
# interactive=True)
# embedding_model = gr.Radio(embedding_model_dict_list,
# label="Embedding 模型",
# value=EMBEDDING_MODEL,
# interactive=True)
# top_k = gr.Slider(1, 20, value=VECTOR_SEARCH_TOP_K, step=1,
# label="向量匹配 top k", interactive=True)
# load_model_button = gr.Button("重新加载模型")
# load_model_button.click(reinit_model, show_progress=True,
# inputs=[llm_model, embedding_model, llm_history_len, no_remote_model, use_ptuning_v2,
# use_lora, top_k, chatbot], outputs=chatbot)
# load_knowlege_button = gr.Button("重新构建知识库")
# load_knowlege_button.click(reinit_vector_store, show_progress=True,
# inputs=[select_vs, chatbot], outputs=chatbot)
def gradio_callback(inputs, outputs):
# 获取用户输入的用户名
username = inputs['username']
# 在这里处理用户名,例如打印出来
print("Current username:", username)
def student():
hy1_path = "/home/wsy/Langchain-chat/Langchain-Chatchat/stuendt/hy_student1.xlsx"
hy2_path = "/home/wsy/Langchain-chat/Langchain-Chatchat/stuendt/hy_student2.xlsx"
lhj_path = "/home/wsy/Langchain-chat/Langchain-Chatchat/stuendt/lhj_student.xlsx"
ygc_path = "/home/wsy/Langchain-chat/Langchain-Chatchat/stuendt/ygc_student.xlsx"
yl_path = "/home/wsy/Langchain-chat/Langchain-Chatchat/stuendt/yl_student.xlsx"
zsg1_path = "/home/wsy/Langchain-chat/Langchain-Chatchat/stuendt/zsg_student1.xlsx"
zsg2_path = "/home/wsy/Langchain-chat/Langchain-Chatchat/stuendt/zsg_student2.xlsx"
hy1_student_data = pd.DataFrame(pd.read_excel(hy1_path))
hy2_student_data = pd.DataFrame(pd.read_excel(hy2_path))
lhj_student_data = pd.DataFrame(pd.read_excel(lhj_path))
ygc_student_data = pd.DataFrame(pd.read_excel(ygc_path))
yl_student_data = pd.DataFrame(pd.read_excel(yl_path))
zsg1_student_data = pd.DataFrame(pd.read_excel(zsg1_path))
zsg2_student_data = pd.DataFrame(pd.read_excel(zsg2_path))
hy1_student = list(hy1_student_data[['姓名', '学号']].apply(tuple, axis=1))
hy2_student = list(hy2_student_data[['姓名', '学号']].apply(tuple, axis=1))
lhj_student = list(lhj_student_data[['姓名', '学号']].apply(tuple, axis=1))
ygc_student = list(ygc_student_data[['姓名', '学号']].apply(tuple, axis=1))
yl_student = list(yl_student_data[['姓名', '学号']].apply(tuple, axis=1))
zsg1_student = list(zsg1_student_data[['姓名', '学号']].apply(tuple, axis=1))
zsg2_student = list(zsg2_student_data[['姓名', '学号']].apply(tuple, axis=1))
student = hy1_student + hy2_student + lhj_student + ygc_student + yl_student + zsg1_student + zsg2_student
for i in range(len(student)):
password = student[i][1]
student[i] = (student[i][0], str(password))
return student
def login(x, y):
users = student()
for username, password in users:
if username == x and password == y:
global user
user = username
return x, y
# demo.load(
# fn=refresh_vs_list,
# inputs=None,
# outputs=[select_vs],
# queue=True,
# show_progress=False,
# )
(demo
.queue(concurrency_count=30) #test
.launch(server_name='0.0.0.0',
server_port=7860,
show_api=False,
share=False,
inbrowser=False,
auth=login)
)