from huggingface_hub import InferenceClient import time client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") # client = InferenceClient("meta-llama/Llama-2-70b-chat-hf") def split_list(lst, chunk_size): return [lst[i:i + chunk_size] for i in range(0, len(lst), chunk_size)] def format_prompt(message, history, system_prompt): prompt = f"[INST] <>{system_prompt}<> [/INST] " if system_prompt else "" for user_prompt in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, system_prompt, history, shouldoverridehistory, historyoverride, max_new_tokens=1024, temperature=1.2, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=round(time.time()), ) if shouldoverridehistory: history = split_list(historyoverride[0], 2) formatted_prompt = format_prompt(prompt, history, system_prompt) print(formatted_prompt) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=True, return_full_text=False) return stream