BigSalmon's picture
Update app.py
c3c8d7b
raw
history blame
2.47 kB
import streamlit as st
import numpy as np
import pandas as pd
import os
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelWithLMHead, AutoModelForCausalLM
from transformers.activations import get_activation
st.title('Informal to Formal:')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
st.text('''Check out this other space: https://huggingface.co/spaces/BigSalmon/GPT2Space''')
st.text('''How To Make Prompt: https://huggingface.co/BigSalmon/DefinitionsSynonyms3
part of speech- verb
definition: grow less in intensity or degree
ex. rather than leave immediately and be drenched, they waited for the storm to ________
synonyms: subside; moderate; decrease
antonyms: increase
word: abate''')
@st.cache(allow_output_mutation=True)
def get_model():
#tokenizer = AutoTokenizer.from_pretrained("gpt2")
#model = AutoModelWithLMHead.from_pretrained("BigSalmon/MrLincoln12")
#model = AutoModelWithLMHead.from_pretrained("BigSalmon/Points")
#tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln91Paraphrase")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln91Paraphrase")
#tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln95Paraphrase")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln95Paraphrase")
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/DefinitionsSynonyms3")
model = AutoModelForCausalLM.from_pretrained("BigSalmon/DefinitionsSynonyms3")
return model, tokenizer
model, tokenizer = get_model()
with st.form(key='my_form'):
prompt = st.text_area(label='Enter sentence')
submit_button = st.form_submit_button(label='Submit')
if submit_button:
with torch.no_grad():
text = tokenizer.encode(prompt)
myinput, past_key_values = torch.tensor([text]), None
myinput = myinput
myinput= myinput.to(device)
logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
logits = logits[0,-1]
probabilities = torch.nn.functional.softmax(logits)
best_logits, best_indices = logits.topk(100)
best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
text.append(best_indices[0].item())
best_probabilities = probabilities[best_indices].tolist()
words = []
st.write(best_words)