Simon Salmon
commited on
Commit
โข
ca0b7b1
1
Parent(s):
74311cf
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from huggingface_hub import InferenceApi
|
3 |
+
import pandas as pd
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
STYLE = """
|
7 |
+
<style>
|
8 |
+
img {
|
9 |
+
max-width: 100%;
|
10 |
+
}
|
11 |
+
|
12 |
+
th {
|
13 |
+
text-align: left!important
|
14 |
+
}
|
15 |
+
|
16 |
+
td {
|
17 |
+
font-size:
|
18 |
+
}
|
19 |
+
</style>
|
20 |
+
"""
|
21 |
+
|
22 |
+
MASK_TOKEN = "<mask>"
|
23 |
+
|
24 |
+
EMOJI_MAP = {
|
25 |
+
"anger": "๐ก",
|
26 |
+
"fear": "๐ฑ",
|
27 |
+
"happy": "๐",
|
28 |
+
"love": "๐",
|
29 |
+
"sadness": "๐ญ",
|
30 |
+
"positive": "๐ค",
|
31 |
+
"negative": "๐ค",
|
32 |
+
"neutral": "๐",
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
def display_table(df: pd.DataFrame, subheader: str):
|
37 |
+
st.subheader(subheader)
|
38 |
+
st.table(df)
|
39 |
+
|
40 |
+
|
41 |
+
def setup():
|
42 |
+
st.markdown(STYLE, unsafe_allow_html=True)
|
43 |
+
st.markdown(
|
44 |
+
"""
|
45 |
+
# ๐ฎ๐ฉ Indonesian RoBERTa Base
|
46 |
+
|
47 |
+
Demo Powered by [Indonesian RoBERTa Base](https://huggingface.co/flax-community/indonesian-roberta-base).
|
48 |
+
"""
|
49 |
+
)
|
50 |
+
st.sidebar.subheader("Settings")
|
51 |
+
|
52 |
+
|
53 |
+
def main():
|
54 |
+
setup()
|
55 |
+
|
56 |
+
analyze = st.sidebar.selectbox(
|
57 |
+
"What should we analyze?",
|
58 |
+
("Emotion", "Sentiment"),
|
59 |
+
help="Classifier model to choose for text analysis",
|
60 |
+
)
|
61 |
+
|
62 |
+
user_input = st.text_input(
|
63 |
+
f"Insert a sentence to predict with a {MASK_TOKEN} token // Masukkan kalimat untuk diisi dengan token {MASK_TOKEN}",
|
64 |
+
value=f"Gila! Hari ini aku {MASK_TOKEN} banget..",
|
65 |
+
)
|
66 |
+
|
67 |
+
mlm_model = "BigSalmon/BestMask2"
|
68 |
+
mask_api = InferenceApi(mlm_model)
|
69 |
+
|
70 |
+
if analyze == "Emotion":
|
71 |
+
sa_model = "StevenLimcorn/indonesian-roberta-base-emotion-classifier"
|
72 |
+
elif analyze == "Sentiment":
|
73 |
+
sa_model = "w11wo/indonesian-roberta-base-sentiment-classifier"
|
74 |
+
|
75 |
+
sa_pipeline = pipeline("sentiment-analysis", model=sa_model, tokenizer=sa_model)
|
76 |
+
|
77 |
+
if len(user_input) > 0:
|
78 |
+
try:
|
79 |
+
user_input.index(MASK_TOKEN)
|
80 |
+
except ValueError:
|
81 |
+
st.error(
|
82 |
+
f"Please enter a sentence with the correct {MASK_TOKEN} token // Harap masukkan kalimat dengan token {MASK_TOKEN} yang benar"
|
83 |
+
)
|
84 |
+
else:
|
85 |
+
# render masked language modeling table
|
86 |
+
mlm_result = mask_api(inputs=user_input)
|
87 |
+
|
88 |
+
if mlm_result == None:
|
89 |
+
st.write("Model is loading. Please try again later...")
|
90 |
+
return
|
91 |
+
|
92 |
+
mlm_df = pd.DataFrame(mlm_result)
|
93 |
+
mlm_df.drop(columns=["token", "token_str"], inplace=True)
|
94 |
+
mlm_df_styled = mlm_df.copy(deep=False)
|
95 |
+
mlm_df_styled = mlm_df_styled.style.set_properties(
|
96 |
+
subset=["sequence", "score"], **{"text-align": "left"}
|
97 |
+
)
|
98 |
+
display_table(mlm_df_styled, "๐ Top 5 Predictions")
|
99 |
+
|
100 |
+
# render sentiment analysis table
|
101 |
+
sa_df = pd.DataFrame(columns=["sequence", "label", "score"])
|
102 |
+
for sequence in mlm_df["sequence"].values:
|
103 |
+
sa_output = sa_pipeline(sequence) # predict for every mlm output
|
104 |
+
result_dict = {"sequence": sequence}
|
105 |
+
result_dict.update(sa_output[0])
|
106 |
+
sa_df = sa_df.append(result_dict, ignore_index=True)
|
107 |
+
|
108 |
+
sa_df["label"] = sa_df["label"].apply(lambda x: x + " " + EMOJI_MAP[x])
|
109 |
+
sa_df_styled = sa_df.copy(deep=False)
|
110 |
+
sa_df_styled = sa_df_styled.style.set_properties(
|
111 |
+
subset=["sequence", "label", "score"], **{"text-align": "left"}
|
112 |
+
)
|
113 |
+
display_table(sa_df_styled, "๐ค By saying that, I guess you are feeling..")
|
114 |
+
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
main()
|