BilalHasan's picture
Update app.py
42fad98 verified
raw
history blame contribute delete
943 Bytes
import tensorflow as tf
from tensorflow.keras.models import load_model
import json
import keras_nlp
import gradio as gr
fnet_classifier = load_model("Sentiments classifier.keras")
with open("vocab.json", "r") as f:
vocab = json.load(f)
seq_max_length = 512
tokenizer = keras_nlp.tokenizers.WordPieceTokenizer(
vocabulary=vocab,
lowercase=False,
sequence_length=seq_max_length,
)
def make_prediction(sentence):
tokens = tokenizer(sentence)
tokens = tf.expand_dims(tokens, 0)
prediction = fnet_classifier.predict(tokens, verbose=0)
if prediction[0][0] > 0.5:
result = "The review is POSITIVE"
else:
result = "The review is NEGATIVE"
return result
gradio_app = gr.Interface(
make_prediction,
inputs=gr.Textbox(label="Your review"),
outputs=gr.Textbox(label="Sentiment"),
title="Positive Review or Negtaive Review",
)
if __name__ == "__main__":
gradio_app.launch()