BilalHasan commited on
Commit
c352eb2
1 Parent(s): bb23959

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ from tensorflow.keras.models import load_model
3
+ import json
4
+ import keras_nlp
5
+ import gradio as gr
6
+
7
+ fnet_classifier = load_model("Sentiments classifier.keras")
8
+
9
+ with open("vocab.json", "r") as f:
10
+ vocab = json.load(f)
11
+
12
+ seq_max_length = 512
13
+ tokenizer = keras_nlp.tokenizers.WordPieceTokenizer(
14
+ vocabulary=vocab,
15
+ lowercase=False,
16
+ sequence_length=seq_max_length,
17
+ )
18
+
19
+ def make_prediction(sentence):
20
+ tokens = tokenizer(review_example)
21
+ tokens = tf.expand_dims(tokens, 0)
22
+ prediction = fnet_classifier.predict(tokens, verbose=0)
23
+
24
+ if prediction[0][0] > 0.5:
25
+ result = "The review is POSITIVE"
26
+ else:
27
+ result = "The review is NEGATIVE"
28
+ return result
29
+
30
+ gradio_app = gr.Interface(
31
+ make_prediction,
32
+ inputs=gr.Textbox(label="Your review"),
33
+ outputs=[gr.Textbox(label="Sentiment"),
34
+ title="Positive Review or Negtaive Review",
35
+ )
36
+
37
+ if __name__ == "__main__":
38
+ gradio_app.launch()