import tensorflow as tf from tensorflow.keras.models import load_model import json import keras_nlp import gradio as gr fnet_classifier = load_model("Sentiments classifier.keras") with open("vocab.json", "r") as f: vocab = json.load(f) seq_max_length = 512 tokenizer = keras_nlp.tokenizers.WordPieceTokenizer( vocabulary=vocab, lowercase=False, sequence_length=seq_max_length, ) def make_prediction(sentence): tokens = tokenizer(review_example) tokens = tf.expand_dims(tokens, 0) prediction = fnet_classifier.predict(tokens, verbose=0) if prediction[0][0] > 0.5: result = "The review is POSITIVE" else: result = "The review is NEGATIVE" return result gradio_app = gr.Interface( make_prediction, inputs=gr.Textbox(label="Your review"), outputs=gr.Textbox(label="Sentiment"), title="Positive Review or Negtaive Review", ) if __name__ == "__main__": gradio_app.launch()