Spaces:
Runtime error
Runtime error
Binlaveloos
commited on
Commit
•
8974d74
1
Parent(s):
52c1ca6
files van zoedepth toegevoegd
Browse files- geometry.py +72 -0
- gradio_depth_pred.py +28 -0
- gradio_im_to_3d.py +69 -0
- utils.py +86 -0
geometry.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
def get_intrinsics(H,W):
|
4 |
+
"""
|
5 |
+
Intrinsics for a pinhole camera model.
|
6 |
+
Assume fov of 55 degrees and central principal point.
|
7 |
+
"""
|
8 |
+
f = 0.5 * W / np.tan(0.5 * 55 * np.pi / 180.0)
|
9 |
+
cx = 0.5 * W
|
10 |
+
cy = 0.5 * H
|
11 |
+
return np.array([[f, 0, cx],
|
12 |
+
[0, f, cy],
|
13 |
+
[0, 0, 1]])
|
14 |
+
|
15 |
+
def depth_to_points(depth, R=None, t=None):
|
16 |
+
|
17 |
+
K = get_intrinsics(depth.shape[1], depth.shape[2])
|
18 |
+
Kinv = np.linalg.inv(K)
|
19 |
+
if R is None:
|
20 |
+
R = np.eye(3)
|
21 |
+
if t is None:
|
22 |
+
t = np.zeros(3)
|
23 |
+
|
24 |
+
# M converts from your coordinate to PyTorch3D's coordinate system
|
25 |
+
M = np.eye(3)
|
26 |
+
M[0, 0] = -1.0
|
27 |
+
M[1, 1] = -1.0
|
28 |
+
|
29 |
+
height, width = depth.shape[1:3]
|
30 |
+
|
31 |
+
x = np.arange(width)
|
32 |
+
y = np.arange(height)
|
33 |
+
coord = np.stack(np.meshgrid(x, y), -1)
|
34 |
+
coord = np.concatenate((coord, np.ones_like(coord)[:, :, [0]]), -1) # z=1
|
35 |
+
coord = coord.astype(np.float32)
|
36 |
+
# coord = torch.as_tensor(coord, dtype=torch.float32, device=device)
|
37 |
+
coord = coord[None] # bs, h, w, 3
|
38 |
+
|
39 |
+
D = depth[:, :, :, None, None]
|
40 |
+
# print(D.shape, Kinv[None, None, None, ...].shape, coord[:, :, :, :, None].shape )
|
41 |
+
pts3D_1 = D * Kinv[None, None, None, ...] @ coord[:, :, :, :, None]
|
42 |
+
# pts3D_1 live in your coordinate system. Convert them to Py3D's
|
43 |
+
pts3D_1 = M[None, None, None, ...] @ pts3D_1
|
44 |
+
# from reference to targe tviewpoint
|
45 |
+
pts3D_2 = R[None, None, None, ...] @ pts3D_1 + t[None, None, None, :, None]
|
46 |
+
# pts3D_2 = pts3D_1
|
47 |
+
# depth_2 = pts3D_2[:, :, :, 2, :] # b,1,h,w
|
48 |
+
return pts3D_2[:, :, :, :3, 0][0]
|
49 |
+
|
50 |
+
|
51 |
+
def create_triangles(h, w, mask=None):
|
52 |
+
"""Creates mesh triangle indices from a given pixel grid size.
|
53 |
+
This function is not and need not be differentiable as triangle indices are
|
54 |
+
fixed.
|
55 |
+
Args:
|
56 |
+
h: (int) denoting the height of the image.
|
57 |
+
w: (int) denoting the width of the image.
|
58 |
+
Returns:
|
59 |
+
triangles: 2D numpy array of indices (int) with shape (2(W-1)(H-1) x 3)
|
60 |
+
"""
|
61 |
+
x, y = np.meshgrid(range(w - 1), range(h - 1))
|
62 |
+
tl = y * w + x
|
63 |
+
tr = y * w + x + 1
|
64 |
+
bl = (y + 1) * w + x
|
65 |
+
br = (y + 1) * w + x + 1
|
66 |
+
triangles = np.array([tl, bl, tr, br, tr, bl])
|
67 |
+
triangles = np.transpose(triangles, (1, 2, 0)).reshape(
|
68 |
+
((w - 1) * (h - 1) * 2, 3))
|
69 |
+
if mask is not None:
|
70 |
+
mask = mask.reshape(-1)
|
71 |
+
triangles = triangles[mask[triangles].all(1)]
|
72 |
+
return triangles
|
gradio_depth_pred.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from utils import colorize
|
3 |
+
from PIL import Image
|
4 |
+
import tempfile
|
5 |
+
|
6 |
+
def predict_depth(model, image):
|
7 |
+
depth = model.infer_pil(image)
|
8 |
+
return depth
|
9 |
+
|
10 |
+
def create_demo(model):
|
11 |
+
gr.Markdown("### Depth Prediction demo")
|
12 |
+
with gr.Row():
|
13 |
+
input_image = gr.Image(label="Input Image", type='pil', elem_id='img-display-input').style(height="auto")
|
14 |
+
depth_image = gr.Image(label="Depth Map", elem_id='img-display-output')
|
15 |
+
raw_file = gr.File(label="16-bit raw depth, multiplier:256")
|
16 |
+
submit = gr.Button("Submit")
|
17 |
+
|
18 |
+
def on_submit(image):
|
19 |
+
depth = predict_depth(model, image)
|
20 |
+
colored_depth = colorize(depth, cmap='gray_r')
|
21 |
+
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
22 |
+
raw_depth = Image.fromarray((depth*256).astype('uint16'))
|
23 |
+
raw_depth.save(tmp.name)
|
24 |
+
return [colored_depth, tmp.name]
|
25 |
+
|
26 |
+
submit.click(on_submit, inputs=[input_image], outputs=[depth_image, raw_file])
|
27 |
+
examples = gr.Examples(examples=["examples/person_1.jpeg", "examples/person_2.jpeg", "examples/person-leaves.png", "examples/living-room.jpeg"],
|
28 |
+
inputs=[input_image])
|
gradio_im_to_3d.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import trimesh
|
4 |
+
from geometry import depth_to_points, create_triangles
|
5 |
+
from functools import partial
|
6 |
+
import tempfile
|
7 |
+
|
8 |
+
|
9 |
+
def depth_edges_mask(depth):
|
10 |
+
"""Returns a mask of edges in the depth map.
|
11 |
+
Args:
|
12 |
+
depth: 2D numpy array of shape (H, W) with dtype float32.
|
13 |
+
Returns:
|
14 |
+
mask: 2D numpy array of shape (H, W) with dtype bool.
|
15 |
+
"""
|
16 |
+
# Compute the x and y gradients of the depth map.
|
17 |
+
depth_dx, depth_dy = np.gradient(depth)
|
18 |
+
# Compute the gradient magnitude.
|
19 |
+
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
|
20 |
+
# Compute the edge mask.
|
21 |
+
mask = depth_grad > 0.05
|
22 |
+
return mask
|
23 |
+
|
24 |
+
|
25 |
+
def predict_depth(model, image):
|
26 |
+
depth = model.infer_pil(image)
|
27 |
+
return depth
|
28 |
+
|
29 |
+
def get_mesh(model, image, keep_edges=False):
|
30 |
+
image.thumbnail((1024,1024)) # limit the size of the input image
|
31 |
+
depth = predict_depth(model, image)
|
32 |
+
pts3d = depth_to_points(depth[None])
|
33 |
+
pts3d = pts3d.reshape(-1, 3)
|
34 |
+
|
35 |
+
# Create a trimesh mesh from the points
|
36 |
+
# Each pixel is connected to its 4 neighbors
|
37 |
+
# colors are the RGB values of the image
|
38 |
+
|
39 |
+
verts = pts3d.reshape(-1, 3)
|
40 |
+
image = np.array(image)
|
41 |
+
if keep_edges:
|
42 |
+
triangles = create_triangles(image.shape[0], image.shape[1])
|
43 |
+
else:
|
44 |
+
triangles = create_triangles(image.shape[0], image.shape[1], mask=~depth_edges_mask(depth))
|
45 |
+
colors = image.reshape(-1, 3)
|
46 |
+
mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors)
|
47 |
+
|
48 |
+
# Save as glb
|
49 |
+
glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
|
50 |
+
glb_path = glb_file.name
|
51 |
+
mesh.export(glb_path)
|
52 |
+
return glb_path
|
53 |
+
|
54 |
+
def create_demo(model):
|
55 |
+
|
56 |
+
gr.Markdown("### Image to 3D mesh")
|
57 |
+
gr.Markdown("Convert a single 2D image to a 3D mesh")
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
image = gr.Image(label="Input Image", type='pil')
|
61 |
+
result = gr.Model3D(label="3d mesh reconstruction", clear_color=[
|
62 |
+
1.0, 1.0, 1.0, 1.0])
|
63 |
+
|
64 |
+
checkbox = gr.Checkbox(label="Keep occlusion edges", value=False)
|
65 |
+
submit = gr.Button("Submit")
|
66 |
+
submit.click(partial(get_mesh, model), inputs=[image, checkbox], outputs=[result])
|
67 |
+
examples = gr.Examples(examples=["examples/aerial_beach.jpeg", "examples/mountains.jpeg", "examples/person_1.jpeg", "examples/ancient-carved.jpeg"],
|
68 |
+
inputs=[image])
|
69 |
+
|
utils.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import matplotlib
|
26 |
+
import matplotlib.cm
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
|
30 |
+
def colorize(value, vmin=None, vmax=None, cmap='magma_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None):
|
31 |
+
"""Converts a depth map to a color image.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed
|
35 |
+
vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None.
|
36 |
+
vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None.
|
37 |
+
cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'.
|
38 |
+
invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99.
|
39 |
+
invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None.
|
40 |
+
background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255).
|
41 |
+
gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False.
|
42 |
+
value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None.
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4)
|
46 |
+
"""
|
47 |
+
if isinstance(value, torch.Tensor):
|
48 |
+
value = value.detach().cpu().numpy()
|
49 |
+
|
50 |
+
value = value.squeeze()
|
51 |
+
if invalid_mask is None:
|
52 |
+
invalid_mask = value == invalid_val
|
53 |
+
mask = np.logical_not(invalid_mask)
|
54 |
+
|
55 |
+
# normalize
|
56 |
+
vmin = np.percentile(value[mask],2) if vmin is None else vmin
|
57 |
+
vmax = np.percentile(value[mask],85) if vmax is None else vmax
|
58 |
+
if vmin != vmax:
|
59 |
+
value = (value - vmin) / (vmax - vmin) # vmin..vmax
|
60 |
+
else:
|
61 |
+
# Avoid 0-division
|
62 |
+
value = value * 0.
|
63 |
+
|
64 |
+
# squeeze last dim if it exists
|
65 |
+
# grey out the invalid values
|
66 |
+
|
67 |
+
value[invalid_mask] = np.nan
|
68 |
+
cmapper = matplotlib.cm.get_cmap(cmap)
|
69 |
+
if value_transform:
|
70 |
+
value = value_transform(value)
|
71 |
+
# value = value / value.max()
|
72 |
+
value = cmapper(value, bytes=True) # (nxmx4)
|
73 |
+
|
74 |
+
# img = value[:, :, :]
|
75 |
+
img = value[...]
|
76 |
+
img[invalid_mask] = background_color
|
77 |
+
|
78 |
+
# return img.transpose((2, 0, 1))
|
79 |
+
if gamma_corrected:
|
80 |
+
# gamma correction
|
81 |
+
img = img / 255
|
82 |
+
img = np.power(img, 2.2)
|
83 |
+
img = img * 255
|
84 |
+
img = img.astype(np.uint8)
|
85 |
+
return img
|
86 |
+
|