Spaces:
Sleeping
Sleeping
import os | |
import re | |
import time | |
import sys | |
import subprocess | |
import scipy.io.wavfile as wavfile | |
import torch | |
import torchaudio | |
import gradio as gr | |
from TTS.api import TTS | |
from TTS.tts.configs.xtts_config import XttsConfig | |
from TTS.tts.models.xtts import Xtts | |
from TTS.utils.generic_utils import get_user_data_dir | |
from huggingface_hub import hf_hub_download | |
# Configuración inicial | |
os.environ["COQUI_TOS_AGREED"] = "1" | |
def check_and_install(package): | |
try: | |
__import__(package) | |
except ImportError: | |
print(f"{package} no está instalado. Instalando...") | |
subprocess.check_call([sys.executable, "-m", "pip", "install", package]) | |
print("Descargando y configurando el modelo...") | |
repo_id = "Blakus/Pedro_Lab_XTTS" | |
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2") | |
os.makedirs(local_dir, exist_ok=True) | |
files_to_download = ["config.json", "model.pth", "vocab.json"] | |
for file_name in files_to_download: | |
print(f"Descargando {file_name} de {repo_id}") | |
hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir) | |
config_path = os.path.join(local_dir, "config.json") | |
checkpoint_path = os.path.join(local_dir, "model.pth") | |
vocab_path = os.path.join(local_dir, "vocab.json") | |
config = XttsConfig() | |
config.load_json(config_path) | |
model = Xtts.init_from_config(config) | |
model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_path, eval=True, use_deepspeed=True) | |
model.cuda() | |
print("Modelo cargado en GPU") | |
def predict(prompt, language, reference_audio): | |
try: | |
if len(prompt) < 2 or len(prompt) > 600: | |
return None, "El texto debe tener entre 2 y 600 caracteres." | |
# Obtener los parámetros de la configuración JSON | |
temperature = config.model_args.get("temperature", 0.85) | |
length_penalty = config.model_args.get("length_penalty", 1.0) | |
repetition_penalty = config.model_args.get("repetition_penalty", 2.0) | |
top_k = config.model_args.get("top_k", 50) | |
top_p = config.model_args.get("top_p", 0.85) | |
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents( | |
audio_path=reference_audio | |
) | |
start_time = time.time() | |
out = model.inference( | |
prompt, | |
language, | |
gpt_cond_latent, | |
speaker_embedding, | |
temperature=temperature, | |
length_penalty=length_penalty, | |
repetition_penalty=repetition_penalty, | |
top_k=top_k, | |
top_p=top_p | |
) | |
inference_time = time.time() - start_time | |
output_path = "output.wav" | |
# Guardar el audio directamente desde el output del modelo | |
import scipy.io.wavfile as wavfile | |
wavfile.write(output_path, config.audio["output_sample_rate"], out["wav"]) | |
audio_length = len(out["wav"]) / config.audio["output_sample_rate"] # duración del audio en segundos | |
real_time_factor = inference_time / audio_length | |
metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n" | |
metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}" | |
return output_path, metrics_text | |
except Exception as e: | |
print(f"Error detallado: {str(e)}") | |
return None, f"Error: {str(e)}" | |
# Configuración de la interfaz de Gradio | |
supported_languages = ["es", "en"] | |
reference_audios = [ | |
"serio.wav", | |
"neutral.wav", | |
"alegre.wav", | |
] | |
theme = gr.themes.Soft( | |
primary_hue="blue", | |
secondary_hue="gray", | |
).set( | |
body_background_fill='*neutral_100', | |
body_background_fill_dark='*neutral_900', | |
) | |
description = """ | |
# Sintetizador de voz de Pedro Labattaglia 🎙️ | |
Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia. | |
## Cómo usarlo: | |
- Elija el idioma (Español o Inglés) | |
- Elija un audio de referencia de la lista | |
- Escriba el texto que desea sintetizar | |
- Presione generar voz | |
""" | |
# Interfaz de Gradio | |
with gr.Blocks(theme=theme) as demo: | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(equal_height=True): # Esto centra la imagen en la fila | |
gr.Image( | |
"https://www.labattaglia.com.ar/images/about_me_pic2.jpg", | |
label="", | |
show_label=False, | |
container=False, # Esto permite que la imagen se ajuste al contenedor | |
elem_id="image-container" # Asigna un ID CSS para agregar estilos personalizados | |
) | |
# Agregamos estilos CSS personalizados | |
demo.css = """ | |
#image-container img { | |
display: block; | |
margin-left: auto; | |
margin-right: auto; | |
max-width: 256px; /* Ancho máximo de 256px */ | |
height: auto; /* Mantener la relación de aspecto */ | |
} | |
""" | |
with gr.Row(): | |
with gr.Column(scale=2): | |
language_selector = gr.Dropdown(label="Idioma", choices=supported_languages) | |
reference_audio = gr.Dropdown(label="Audio de referencia", choices=reference_audios) | |
input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...") | |
generate_button = gr.Button("Generar voz", variant="primary") | |
with gr.Column(scale=1): | |
generated_audio = gr.Audio(label="Audio generado", interactive=False) | |
metrics_output = gr.Textbox(label="Métricas", value="Tiempo de generación: -- segundos\nFactor de tiempo real: --") | |
generate_button.click( | |
predict, | |
inputs=[input_text, language_selector, reference_audio], | |
outputs=[generated_audio, metrics_output] | |
) | |
if __name__ == "__main__": | |
demo.launch() |