Blakus's picture
Update app.py
fee8703 verified
raw
history blame
5.69 kB
import os
import re
import time
import sys
import subprocess
import scipy.io.wavfile as wavfile
import torch
import torchaudio
import gradio as gr
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
from huggingface_hub import hf_hub_download
# Configuración inicial
os.environ["COQUI_TOS_AGREED"] = "1"
def check_and_install(package):
try:
__import__(package)
except ImportError:
print(f"{package} no está instalado. Instalando...")
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
print("Descargando y configurando el modelo...")
repo_id = "Blakus/Pedro_Lab_XTTS"
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
os.makedirs(local_dir, exist_ok=True)
files_to_download = ["config.json", "model.pth", "vocab.json"]
for file_name in files_to_download:
print(f"Descargando {file_name} de {repo_id}")
hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
config_path = os.path.join(local_dir, "config.json")
checkpoint_path = os.path.join(local_dir, "model.pth")
vocab_path = os.path.join(local_dir, "vocab.json")
config = XttsConfig()
config.load_json(config_path)
model = Xtts.init_from_config(config)
model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_path, eval=True, use_deepspeed=True)
model.cuda()
print("Modelo cargado en GPU")
def predict(prompt, language, reference_audio):
try:
if len(prompt) < 2 or len(prompt) > 600:
return None, "El texto debe tener entre 2 y 600 caracteres."
# Obtener los parámetros de la configuración JSON
temperature = config.model_args.get("temperature", 0.85)
length_penalty = config.model_args.get("length_penalty", 1.0)
repetition_penalty = config.model_args.get("repetition_penalty", 2.0)
top_k = config.model_args.get("top_k", 50)
top_p = config.model_args.get("top_p", 0.85)
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
audio_path=reference_audio
)
start_time = time.time()
out = model.inference(
prompt,
language,
gpt_cond_latent,
speaker_embedding,
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p
)
inference_time = time.time() - start_time
output_path = "output.wav"
# Guardar el audio directamente desde el output del modelo
import scipy.io.wavfile as wavfile
wavfile.write(output_path, config.audio["output_sample_rate"], out["wav"])
audio_length = len(out["wav"]) / config.audio["output_sample_rate"] # duración del audio en segundos
real_time_factor = inference_time / audio_length
metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
return output_path, metrics_text
except Exception as e:
print(f"Error detallado: {str(e)}")
return None, f"Error: {str(e)}"
# Configuración de la interfaz de Gradio
supported_languages = ["es", "en"]
reference_audios = [
"serio.wav",
"neutral.wav",
"alegre.wav",
]
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="gray",
).set(
body_background_fill='*neutral_100',
body_background_fill_dark='*neutral_900',
)
description = """
# Sintetizador de voz de Pedro Labattaglia 🎙️
Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia.
## Cómo usarlo:
- Elija el idioma (Español o Inglés)
- Elija un audio de referencia de la lista
- Escriba el texto que desea sintetizar
- Presione generar voz
"""
# Interfaz de Gradio
with gr.Blocks(theme=theme) as demo:
gr.Markdown(description)
with gr.Row():
with gr.Column(equal_height=True): # Esto centra la imagen en la fila
gr.Image(
"https://www.labattaglia.com.ar/images/about_me_pic2.jpg",
label="",
show_label=False,
container=False, # Esto permite que la imagen se ajuste al contenedor
elem_id="image-container" # Asigna un ID CSS para agregar estilos personalizados
)
# Agregamos estilos CSS personalizados
demo.css = """
#image-container img {
display: block;
margin-left: auto;
margin-right: auto;
max-width: 256px; /* Ancho máximo de 256px */
height: auto; /* Mantener la relación de aspecto */
}
"""
with gr.Row():
with gr.Column(scale=2):
language_selector = gr.Dropdown(label="Idioma", choices=supported_languages)
reference_audio = gr.Dropdown(label="Audio de referencia", choices=reference_audios)
input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
generate_button = gr.Button("Generar voz", variant="primary")
with gr.Column(scale=1):
generated_audio = gr.Audio(label="Audio generado", interactive=False)
metrics_output = gr.Textbox(label="Métricas", value="Tiempo de generación: -- segundos\nFactor de tiempo real: --")
generate_button.click(
predict,
inputs=[input_text, language_selector, reference_audio],
outputs=[generated_audio, metrics_output]
)
if __name__ == "__main__":
demo.launch()