Blakus commited on
Commit
00fb423
1 Parent(s): cdd95d1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +106 -87
app.py CHANGED
@@ -1,52 +1,43 @@
 
 
 
1
  import sys
2
- import io, os, stat
3
  import subprocess
4
- import random
5
- from zipfile import ZipFile
6
- import uuid
7
- import time
8
- import torch
9
- import torchaudio
10
- import time
11
- # Mantenemos la descarga de MeCab
12
- os.system('python -m unidic download')
13
-
14
- # Mantenemos el acuerdo de CPML
15
- os.environ["COQUI_TOS_AGREED"] = "1"
16
-
17
- import langid
18
- import base64
19
- import csv
20
- from io import StringIO
21
- import datetime
22
- import re
23
-
24
  import gradio as gr
25
- from scipy.io.wavfile import write
26
  from pydub import AudioSegment
27
-
28
  from TTS.api import TTS
29
  from TTS.tts.configs.xtts_config import XttsConfig
30
  from TTS.tts.models.xtts import Xtts
31
  from TTS.utils.generic_utils import get_user_data_dir
 
32
 
33
- HF_TOKEN = os.environ.get("HF_TOKEN")
 
34
 
35
- from huggingface_hub import hf_hub_download
36
- import os
37
- from TTS.utils.manage import get_user_data_dir
 
 
 
 
 
 
 
38
 
39
- # Mantenemos la autenticación y descarga del modelo
 
 
 
40
  repo_id = "Blakus/Pedro_Lab_XTTS"
41
  local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
42
  os.makedirs(local_dir, exist_ok=True)
43
  files_to_download = ["config.json", "model.pth", "vocab.json"]
 
44
  for file_name in files_to_download:
45
- print(f"Downloading {file_name} from {repo_id}")
46
- local_file_path = os.path.join(local_dir, file_name)
47
  hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
48
 
49
- # Cargamos configuración y modelo
50
  config_path = os.path.join(local_dir, "config.json")
51
  checkpoint_path = os.path.join(local_dir, "model.pth")
52
  vocab_path = os.path.join(local_dir, "vocab.json")
@@ -59,90 +50,118 @@ model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_
59
 
60
  print("Modelo cargado en CPU")
61
 
62
- # Mantenemos variables globales y funciones auxiliares
63
- DEVICE_ASSERT_DETECTED = 0
64
- DEVICE_ASSERT_PROMPT = None
65
- DEVICE_ASSERT_LANG = None
66
- supported_languages = config.languages
67
 
68
- # Función de inferencia usando parámetros predeterminados del archivo de configuración
69
- def predict(prompt, language, audio_file_pth, mic_file_path, use_mic):
70
  try:
71
- if use_mic:
72
- speaker_wav = mic_file_path
73
- else:
74
- speaker_wav = audio_file_pth
75
 
76
- if len(prompt) < 2 or len(prompt) > 200:
77
- return None, None, "El texto debe tener entre 2 y 200 caracteres."
78
 
79
- # Usamos los valores de la configuración directamente
80
- temperature = getattr(config, "temperature", 0.75)
81
- repetition_penalty = getattr(config, "repetition_penalty", 5.0)
82
- gpt_cond_len = getattr(config, "gpt_cond_len", 30)
83
- gpt_cond_chunk_len = getattr(config, "gpt_cond_chunk_len", 4)
84
- max_ref_length = getattr(config, "max_ref_len", 60)
85
 
86
  gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
87
- audio_path=speaker_wav,
88
  gpt_cond_len=gpt_cond_len,
89
  gpt_cond_chunk_len=gpt_cond_chunk_len,
90
  max_ref_length=max_ref_length
91
  )
92
 
93
- # Medimos el tiempo de inferencia manualmente
94
  start_time = time.time()
95
- out = model.inference(
96
- prompt,
97
- language,
98
- gpt_cond_latent,
99
- speaker_embedding,
100
- temperature=temperature,
101
- repetition_penalty=repetition_penalty,
102
- )
 
 
 
 
 
 
 
 
 
 
 
 
103
  inference_time = time.time() - start_time
104
 
105
- torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
 
106
 
107
- # Calculamos las métricas usando el tiempo medido manualmente
108
- audio_length = len(out["wav"]) / 24000 # duración del audio en segundos
109
  real_time_factor = inference_time / audio_length
110
 
111
  metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
112
  metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
113
 
114
- return gr.make_waveform("output.wav"), "output.wav", metrics_text
115
 
116
  except Exception as e:
117
  print(f"Error detallado: {str(e)}")
118
- return None, None, f"Error: {str(e)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
 
 
 
120
 
121
- # Interfaz de Gradio actualizada sin sliders
122
- with gr.Blocks(theme=gr.themes.Base()) as demo:
123
- gr.Markdown("# Sintetizador de Voz XTTS")
124
-
125
  with gr.Row():
126
- with gr.Column():
 
 
127
  input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
128
- language = gr.Dropdown(label="Idioma", choices=supported_languages, value="es")
129
- audio_file = gr.Audio(label="Audio de referencia", type="filepath")
130
- use_mic = gr.Checkbox(label="Usar micrófono")
131
- mic_file = gr.Audio(label="Grabar con micrófono", source="microphone", type="filepath", visible=False)
132
-
133
- use_mic.change(fn=lambda x: gr.update(visible=x), inputs=[use_mic], outputs=[mic_file])
134
-
135
- generate_button = gr.Button("Generar voz")
136
-
137
- with gr.Column():
138
- output_audio = gr.Audio(label="Audio generado")
139
- waveform = gr.Image(label="Forma de onda")
140
- metrics = gr.Textbox(label="Métricas")
141
-
142
  generate_button.click(
143
  predict,
144
- inputs=[input_text, language, audio_file, mic_file, use_mic],
145
- outputs=[waveform, output_audio, metrics]
146
  )
147
 
148
- demo.launch(debug=True)
 
 
1
+ import os
2
+ import re
3
+ import time
4
  import sys
 
5
  import subprocess
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  import gradio as gr
 
7
  from pydub import AudioSegment
 
8
  from TTS.api import TTS
9
  from TTS.tts.configs.xtts_config import XttsConfig
10
  from TTS.tts.models.xtts import Xtts
11
  from TTS.utils.generic_utils import get_user_data_dir
12
+ from huggingface_hub import hf_hub_download
13
 
14
+ # Configuración inicial
15
+ os.environ["COQUI_TOS_AGREED"] = "1"
16
 
17
+ def check_and_install(package):
18
+ try:
19
+ __import__(package)
20
+ except ImportError:
21
+ print(f"{package} no está instalado. Instalando...")
22
+ subprocess.check_call([sys.executable, "-m", "pip", "install", package])
23
+
24
+ # Asegurar que MeCab y UniDic estén instalados
25
+ check_and_install("MeCab")
26
+ check_and_install("unidic-lite")
27
 
28
+ # Descargar UniDic
29
+ os.system('python -m unidic download')
30
+
31
+ print("Descargando y configurando el modelo...")
32
  repo_id = "Blakus/Pedro_Lab_XTTS"
33
  local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
34
  os.makedirs(local_dir, exist_ok=True)
35
  files_to_download = ["config.json", "model.pth", "vocab.json"]
36
+
37
  for file_name in files_to_download:
38
+ print(f"Descargando {file_name} de {repo_id}")
 
39
  hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
40
 
 
41
  config_path = os.path.join(local_dir, "config.json")
42
  checkpoint_path = os.path.join(local_dir, "model.pth")
43
  vocab_path = os.path.join(local_dir, "vocab.json")
 
50
 
51
  print("Modelo cargado en CPU")
52
 
53
+ def split_text(text):
54
+ return re.split(r'(?<=[.!?])\s+', text)
 
 
 
55
 
56
+ def predict(prompt, language, reference_audio):
 
57
  try:
58
+ if len(prompt) < 2 or len(prompt) > 600:
59
+ return None, "El texto debe tener entre 2 y 600 caracteres."
 
 
60
 
61
+ sentences = split_text(prompt)
 
62
 
63
+ temperature = config.inference.get("temperature", 0.75)
64
+ repetition_penalty = config.inference.get("repetition_penalty", 5.0)
65
+ gpt_cond_len = config.inference.get("gpt_cond_len", 30)
66
+ gpt_cond_chunk_len = config.inference.get("gpt_cond_chunk_len", 4)
67
+ max_ref_length = config.inference.get("max_ref_length", 60)
 
68
 
69
  gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
70
+ audio_path=reference_audio,
71
  gpt_cond_len=gpt_cond_len,
72
  gpt_cond_chunk_len=gpt_cond_chunk_len,
73
  max_ref_length=max_ref_length
74
  )
75
 
 
76
  start_time = time.time()
77
+ combined_audio = AudioSegment.empty()
78
+
79
+ for sentence in sentences:
80
+ out = model.inference(
81
+ sentence,
82
+ language,
83
+ gpt_cond_latent,
84
+ speaker_embedding,
85
+ temperature=temperature,
86
+ repetition_penalty=repetition_penalty,
87
+ )
88
+ audio_segment = AudioSegment(
89
+ out["wav"].tobytes(),
90
+ frame_rate=24000,
91
+ sample_width=2,
92
+ channels=1
93
+ )
94
+ combined_audio += audio_segment
95
+ combined_audio += AudioSegment.silent(duration=500) # 0.5 segundos de silencio
96
+
97
  inference_time = time.time() - start_time
98
 
99
+ output_path = "output.wav"
100
+ combined_audio.export(output_path, format="wav")
101
 
102
+ audio_length = len(combined_audio) / 1000 # duración del audio en segundos
 
103
  real_time_factor = inference_time / audio_length
104
 
105
  metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
106
  metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
107
 
108
+ return output_path, metrics_text
109
 
110
  except Exception as e:
111
  print(f"Error detallado: {str(e)}")
112
+ return None, f"Error: {str(e)}"
113
+
114
+ # Configuración de la interfaz de Gradio
115
+ supported_languages = ["es", "en"]
116
+ reference_audios = [
117
+ "serio.wav",
118
+ "neutral.wav",
119
+ "alegre.wav",
120
+ ]
121
+
122
+ theme = gr.themes.Soft(
123
+ primary_hue="blue",
124
+ secondary_hue="gray",
125
+ ).set(
126
+ body_background_fill='*neutral_100',
127
+ body_background_fill_dark='*neutral_900',
128
+ )
129
+
130
+ description = """
131
+ # Sintetizador de voz de Pedro Labattaglia 🎙️
132
+
133
+ Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia.
134
+
135
+ ## Cómo usarlo:
136
+ - Elija el idioma (Español o Inglés)
137
+ - Elija un audio de referencia de la lista
138
+ - Escriba el texto que desea sintetizar
139
+ - Presione generar voz
140
+ """
141
+
142
+ # Interfaz de Gradio
143
+ with gr.Blocks(theme=theme) as demo:
144
+ gr.Markdown(description)
145
 
146
+ with gr.Row():
147
+ gr.Image("https://i1.sndcdn.com/artworks-000237574740-gwz61j-t500x500.jpg", label="", show_label=False, width=250, height=250)
148
 
 
 
 
 
149
  with gr.Row():
150
+ with gr.Column(scale=2):
151
+ language_selector = gr.Dropdown(label="Idioma", choices=supported_languages)
152
+ reference_audio = gr.Dropdown(label="Audio de referencia", choices=reference_audios)
153
  input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
154
+ generate_button = gr.Button("Generar voz", variant="primary")
155
+
156
+ with gr.Column(scale=1):
157
+ generated_audio = gr.Audio(label="Audio generado", interactive=False)
158
+ metrics_output = gr.Textbox(label="Métricas", value="Tiempo de generación: -- segundos\nFactor de tiempo real: --")
159
+
 
 
 
 
 
 
 
 
160
  generate_button.click(
161
  predict,
162
+ inputs=[input_text, language_selector, reference_audio],
163
+ outputs=[generated_audio, metrics_output]
164
  )
165
 
166
+ if __name__ == "__main__":
167
+ demo.launch()