Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,43 @@
|
|
|
|
|
|
|
|
1 |
import sys
|
2 |
-
import io, os, stat
|
3 |
import subprocess
|
4 |
-
import random
|
5 |
-
from zipfile import ZipFile
|
6 |
-
import uuid
|
7 |
-
import time
|
8 |
-
import torch
|
9 |
-
import torchaudio
|
10 |
-
import time
|
11 |
-
# Mantenemos la descarga de MeCab
|
12 |
-
os.system('python -m unidic download')
|
13 |
-
|
14 |
-
# Mantenemos el acuerdo de CPML
|
15 |
-
os.environ["COQUI_TOS_AGREED"] = "1"
|
16 |
-
|
17 |
-
import langid
|
18 |
-
import base64
|
19 |
-
import csv
|
20 |
-
from io import StringIO
|
21 |
-
import datetime
|
22 |
-
import re
|
23 |
-
|
24 |
import gradio as gr
|
25 |
-
from scipy.io.wavfile import write
|
26 |
from pydub import AudioSegment
|
27 |
-
|
28 |
from TTS.api import TTS
|
29 |
from TTS.tts.configs.xtts_config import XttsConfig
|
30 |
from TTS.tts.models.xtts import Xtts
|
31 |
from TTS.utils.generic_utils import get_user_data_dir
|
|
|
32 |
|
33 |
-
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
#
|
|
|
|
|
|
|
40 |
repo_id = "Blakus/Pedro_Lab_XTTS"
|
41 |
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
|
42 |
os.makedirs(local_dir, exist_ok=True)
|
43 |
files_to_download = ["config.json", "model.pth", "vocab.json"]
|
|
|
44 |
for file_name in files_to_download:
|
45 |
-
print(f"
|
46 |
-
local_file_path = os.path.join(local_dir, file_name)
|
47 |
hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
|
48 |
|
49 |
-
# Cargamos configuración y modelo
|
50 |
config_path = os.path.join(local_dir, "config.json")
|
51 |
checkpoint_path = os.path.join(local_dir, "model.pth")
|
52 |
vocab_path = os.path.join(local_dir, "vocab.json")
|
@@ -59,90 +50,118 @@ model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_
|
|
59 |
|
60 |
print("Modelo cargado en CPU")
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
DEVICE_ASSERT_PROMPT = None
|
65 |
-
DEVICE_ASSERT_LANG = None
|
66 |
-
supported_languages = config.languages
|
67 |
|
68 |
-
|
69 |
-
def predict(prompt, language, audio_file_pth, mic_file_path, use_mic):
|
70 |
try:
|
71 |
-
if
|
72 |
-
|
73 |
-
else:
|
74 |
-
speaker_wav = audio_file_pth
|
75 |
|
76 |
-
|
77 |
-
return None, None, "El texto debe tener entre 2 y 200 caracteres."
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
max_ref_length = getattr(config, "max_ref_len", 60)
|
85 |
|
86 |
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
|
87 |
-
audio_path=
|
88 |
gpt_cond_len=gpt_cond_len,
|
89 |
gpt_cond_chunk_len=gpt_cond_chunk_len,
|
90 |
max_ref_length=max_ref_length
|
91 |
)
|
92 |
|
93 |
-
# Medimos el tiempo de inferencia manualmente
|
94 |
start_time = time.time()
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
inference_time = time.time() - start_time
|
104 |
|
105 |
-
|
|
|
106 |
|
107 |
-
|
108 |
-
audio_length = len(out["wav"]) / 24000 # duración del audio en segundos
|
109 |
real_time_factor = inference_time / audio_length
|
110 |
|
111 |
metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
|
112 |
metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
|
113 |
|
114 |
-
return
|
115 |
|
116 |
except Exception as e:
|
117 |
print(f"Error detallado: {str(e)}")
|
118 |
-
return None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
|
|
|
|
120 |
|
121 |
-
# Interfaz de Gradio actualizada sin sliders
|
122 |
-
with gr.Blocks(theme=gr.themes.Base()) as demo:
|
123 |
-
gr.Markdown("# Sintetizador de Voz XTTS")
|
124 |
-
|
125 |
with gr.Row():
|
126 |
-
with gr.Column():
|
|
|
|
|
127 |
input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
generate_button = gr.Button("Generar voz")
|
136 |
-
|
137 |
-
with gr.Column():
|
138 |
-
output_audio = gr.Audio(label="Audio generado")
|
139 |
-
waveform = gr.Image(label="Forma de onda")
|
140 |
-
metrics = gr.Textbox(label="Métricas")
|
141 |
-
|
142 |
generate_button.click(
|
143 |
predict,
|
144 |
-
inputs=[input_text,
|
145 |
-
outputs=[
|
146 |
)
|
147 |
|
148 |
-
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import time
|
4 |
import sys
|
|
|
5 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import gradio as gr
|
|
|
7 |
from pydub import AudioSegment
|
|
|
8 |
from TTS.api import TTS
|
9 |
from TTS.tts.configs.xtts_config import XttsConfig
|
10 |
from TTS.tts.models.xtts import Xtts
|
11 |
from TTS.utils.generic_utils import get_user_data_dir
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
|
14 |
+
# Configuración inicial
|
15 |
+
os.environ["COQUI_TOS_AGREED"] = "1"
|
16 |
|
17 |
+
def check_and_install(package):
|
18 |
+
try:
|
19 |
+
__import__(package)
|
20 |
+
except ImportError:
|
21 |
+
print(f"{package} no está instalado. Instalando...")
|
22 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
23 |
+
|
24 |
+
# Asegurar que MeCab y UniDic estén instalados
|
25 |
+
check_and_install("MeCab")
|
26 |
+
check_and_install("unidic-lite")
|
27 |
|
28 |
+
# Descargar UniDic
|
29 |
+
os.system('python -m unidic download')
|
30 |
+
|
31 |
+
print("Descargando y configurando el modelo...")
|
32 |
repo_id = "Blakus/Pedro_Lab_XTTS"
|
33 |
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
|
34 |
os.makedirs(local_dir, exist_ok=True)
|
35 |
files_to_download = ["config.json", "model.pth", "vocab.json"]
|
36 |
+
|
37 |
for file_name in files_to_download:
|
38 |
+
print(f"Descargando {file_name} de {repo_id}")
|
|
|
39 |
hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
|
40 |
|
|
|
41 |
config_path = os.path.join(local_dir, "config.json")
|
42 |
checkpoint_path = os.path.join(local_dir, "model.pth")
|
43 |
vocab_path = os.path.join(local_dir, "vocab.json")
|
|
|
50 |
|
51 |
print("Modelo cargado en CPU")
|
52 |
|
53 |
+
def split_text(text):
|
54 |
+
return re.split(r'(?<=[.!?])\s+', text)
|
|
|
|
|
|
|
55 |
|
56 |
+
def predict(prompt, language, reference_audio):
|
|
|
57 |
try:
|
58 |
+
if len(prompt) < 2 or len(prompt) > 600:
|
59 |
+
return None, "El texto debe tener entre 2 y 600 caracteres."
|
|
|
|
|
60 |
|
61 |
+
sentences = split_text(prompt)
|
|
|
62 |
|
63 |
+
temperature = config.inference.get("temperature", 0.75)
|
64 |
+
repetition_penalty = config.inference.get("repetition_penalty", 5.0)
|
65 |
+
gpt_cond_len = config.inference.get("gpt_cond_len", 30)
|
66 |
+
gpt_cond_chunk_len = config.inference.get("gpt_cond_chunk_len", 4)
|
67 |
+
max_ref_length = config.inference.get("max_ref_length", 60)
|
|
|
68 |
|
69 |
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
|
70 |
+
audio_path=reference_audio,
|
71 |
gpt_cond_len=gpt_cond_len,
|
72 |
gpt_cond_chunk_len=gpt_cond_chunk_len,
|
73 |
max_ref_length=max_ref_length
|
74 |
)
|
75 |
|
|
|
76 |
start_time = time.time()
|
77 |
+
combined_audio = AudioSegment.empty()
|
78 |
+
|
79 |
+
for sentence in sentences:
|
80 |
+
out = model.inference(
|
81 |
+
sentence,
|
82 |
+
language,
|
83 |
+
gpt_cond_latent,
|
84 |
+
speaker_embedding,
|
85 |
+
temperature=temperature,
|
86 |
+
repetition_penalty=repetition_penalty,
|
87 |
+
)
|
88 |
+
audio_segment = AudioSegment(
|
89 |
+
out["wav"].tobytes(),
|
90 |
+
frame_rate=24000,
|
91 |
+
sample_width=2,
|
92 |
+
channels=1
|
93 |
+
)
|
94 |
+
combined_audio += audio_segment
|
95 |
+
combined_audio += AudioSegment.silent(duration=500) # 0.5 segundos de silencio
|
96 |
+
|
97 |
inference_time = time.time() - start_time
|
98 |
|
99 |
+
output_path = "output.wav"
|
100 |
+
combined_audio.export(output_path, format="wav")
|
101 |
|
102 |
+
audio_length = len(combined_audio) / 1000 # duración del audio en segundos
|
|
|
103 |
real_time_factor = inference_time / audio_length
|
104 |
|
105 |
metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
|
106 |
metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
|
107 |
|
108 |
+
return output_path, metrics_text
|
109 |
|
110 |
except Exception as e:
|
111 |
print(f"Error detallado: {str(e)}")
|
112 |
+
return None, f"Error: {str(e)}"
|
113 |
+
|
114 |
+
# Configuración de la interfaz de Gradio
|
115 |
+
supported_languages = ["es", "en"]
|
116 |
+
reference_audios = [
|
117 |
+
"serio.wav",
|
118 |
+
"neutral.wav",
|
119 |
+
"alegre.wav",
|
120 |
+
]
|
121 |
+
|
122 |
+
theme = gr.themes.Soft(
|
123 |
+
primary_hue="blue",
|
124 |
+
secondary_hue="gray",
|
125 |
+
).set(
|
126 |
+
body_background_fill='*neutral_100',
|
127 |
+
body_background_fill_dark='*neutral_900',
|
128 |
+
)
|
129 |
+
|
130 |
+
description = """
|
131 |
+
# Sintetizador de voz de Pedro Labattaglia 🎙️
|
132 |
+
|
133 |
+
Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia.
|
134 |
+
|
135 |
+
## Cómo usarlo:
|
136 |
+
- Elija el idioma (Español o Inglés)
|
137 |
+
- Elija un audio de referencia de la lista
|
138 |
+
- Escriba el texto que desea sintetizar
|
139 |
+
- Presione generar voz
|
140 |
+
"""
|
141 |
+
|
142 |
+
# Interfaz de Gradio
|
143 |
+
with gr.Blocks(theme=theme) as demo:
|
144 |
+
gr.Markdown(description)
|
145 |
|
146 |
+
with gr.Row():
|
147 |
+
gr.Image("https://i1.sndcdn.com/artworks-000237574740-gwz61j-t500x500.jpg", label="", show_label=False, width=250, height=250)
|
148 |
|
|
|
|
|
|
|
|
|
149 |
with gr.Row():
|
150 |
+
with gr.Column(scale=2):
|
151 |
+
language_selector = gr.Dropdown(label="Idioma", choices=supported_languages)
|
152 |
+
reference_audio = gr.Dropdown(label="Audio de referencia", choices=reference_audios)
|
153 |
input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
|
154 |
+
generate_button = gr.Button("Generar voz", variant="primary")
|
155 |
+
|
156 |
+
with gr.Column(scale=1):
|
157 |
+
generated_audio = gr.Audio(label="Audio generado", interactive=False)
|
158 |
+
metrics_output = gr.Textbox(label="Métricas", value="Tiempo de generación: -- segundos\nFactor de tiempo real: --")
|
159 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
generate_button.click(
|
161 |
predict,
|
162 |
+
inputs=[input_text, language_selector, reference_audio],
|
163 |
+
outputs=[generated_audio, metrics_output]
|
164 |
)
|
165 |
|
166 |
+
if __name__ == "__main__":
|
167 |
+
demo.launch()
|