File size: 9,808 Bytes
8c8860a 6ad1e89 8c8860a 6ad1e89 8c8860a 6ad1e89 8c8860a e02355a 8c8860a e02355a 8c8860a e02355a 8c8860a e02355a 8c8860a 6ad1e89 8c8860a e02355a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import os
import re
import random
from scipy.io.wavfile import write
from scipy.io.wavfile import read
import numpy as np
import gradio as gr
import yt_dlp
import subprocess
mdxnet_models = [
'UVR-MDX-NET-Inst_full_292.onnx',
'UVR-MDX-NET_Inst_187_beta.onnx',
'UVR-MDX-NET_Inst_82_beta.onnx',
'UVR-MDX-NET_Inst_90_beta.onnx',
'UVR-MDX-NET_Main_340.onnx',
'UVR-MDX-NET_Main_390.onnx',
'UVR-MDX-NET_Main_406.onnx',
'UVR-MDX-NET_Main_427.onnx',
'UVR-MDX-NET_Main_438.onnx',
'UVR-MDX-NET-Inst_HQ_1.onnx',
'UVR-MDX-NET-Inst_HQ_2.onnx',
'UVR-MDX-NET-Inst_HQ_3.onnx',
'UVR-MDX-NET-Inst_HQ_4.onnx',
'UVR_MDXNET_Main.onnx',
'UVR-MDX-NET-Inst_Main.onnx',
'UVR_MDXNET_1_9703.onnx',
'UVR_MDXNET_2_9682.onnx',
'UVR_MDXNET_3_9662.onnx',
'UVR-MDX-NET-Inst_1.onnx',
'UVR-MDX-NET-Inst_2.onnx',
'UVR-MDX-NET-Inst_3.onnx',
'UVR_MDXNET_KARA.onnx',
'UVR_MDXNET_KARA_2.onnx',
'UVR_MDXNET_9482.onnx',
'UVR-MDX-NET-Voc_FT.onnx',
'Kim_Vocal_1.onnx',
'Kim_Vocal_2.onnx',
'Kim_Inst.onnx',
'Reverb_HQ_By_FoxJoy.onnx',
'UVR-MDX-NET_Crowd_HQ_1.onnx',
'kuielab_a_vocals.onnx',
'kuielab_a_other.onnx',
'kuielab_a_bass.onnx',
'kuielab_a_drums.onnx',
'kuielab_b_vocals.onnx',
'kuielab_b_other.onnx',
'kuielab_b_bass.onnx',
'kuielab_b_drums.onnx',
]
output_format = [
'wav',
'flac',
'mp3',
]
mdxnet_overlap_values = [
'0.25',
'0.5',
'0.75',
'0.99',
]
def download_audio(url):
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': 'ytdl/%(title)s.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav'
sample_rate, audio_data = read(file_path)
audio_array = np.asarray(audio_data, dtype=np.int16)
return sample_rate, audio_array
def mdxnet_separator(mdxnet_audio, mdxnet_model, mdxnet_output_format, mdxnet_segment_size, mdxnet_overlap, mdxnet_denoise):
files_list = []
files_list.clear()
directory = "./outputs"
random_id = str(random.randint(10000, 99999))
pattern = f"{random_id}"
os.makedirs("outputs", exist_ok=True)
write(f'{random_id}.wav', mdxnet_audio[0], mdxnet_audio[1])
prompt = f"audio-separator {random_id}.wav --model_filename {mdxnet_model} --output_dir=./outputs --output_format={mdxnet_output_format} --normalization=0.9 --mdx_segment_size={mdxnet_segment_size} --mdx_overlap={mdxnet_overlap}"
if mdxnet_denoise:
prompt += " --mdx_enable_denoise"
os.system(prompt)
for file in os.listdir(directory):
if re.search(pattern, file):
files_list.append(os.path.join(directory, file))
stem1_file = files_list[0]
stem2_file = files_list[1]
return stem1_file, stem2_file
def mdxnet_batch(path_input, path_output, model, output_format, overlap, segment_size, denoise):
found_files = []
logs = []
logs.clear()
extensions = (".mp3", ".wav", ".flac")
for audio_files in os.listdir(path_input):
if audio_files.endswith(extensions):
found_files.append(audio_files)
total_files = len(found_files)
if total_files == 0:
logs.append("No valid audio files.")
yield "\n".join(logs)
else:
logs.append(f"{total_files} audio files found")
found_files.sort()
for audio_files in found_files:
file_path = os.path.join(path_input, audio_files)
prompt = ["audio-separator", file_path, "-m", f"{model}", f"--output_dir={path_output}", f"--output_format={output_format}", "--normalization=0.9", f"--mdx_overlap={overlap}", f"--mdx_segment_size={segment_size}"]
if denoise:
prompt.append("--mdx_enable_denoise")
logs.append(f"Processing file: {audio_files}")
yield "\n".join(logs)
subprocess.run(prompt)
logs.append(f"File: {audio_files} processed!")
yield "\n".join(logs)
with gr.Blocks(theme="Blane187/fuchsia", title="🎵 UVR5 MDX 🎵") as app:
gr.Markdown("<h1> 🎵 UVR MDX 🎵 </h1>")
gr.Markdown("If you liked this HF Space you can give me a ❤️")
gr.Markdown("Try UVR5 UI using Colab [here](https://colab.research.google.com/github/Eddycrack864/UVR5-UI/blob/main/UVR_UI.ipynb)")
with gr.Tabs():
with gr.TabItem("MDX-NET"):
with gr.Row():
mdxnet_model = gr.Dropdown(
label = "Select the Model",
choices = mdxnet_models,
interactive = True
)
with gr.Row():
mdxnet_output_format = gr.Dropdown(
label = "Select the Output Format",
choices = output_format,
interactive = True
)
with gr.Row():
mdxnet_segment_size = gr.Slider(
minimum = 32,
maximum = 4000,
step = 32,
label = "Segment Size",
info = "Larger consumes more resources, but may give better results.",
value = 256,
interactive = True
)
with gr.Row():
mdxnet_overlap = gr.Dropdown(
label = "Overlap",
choices = mdxnet_overlap_values,
value = mdxnet_overlap_values[0],
interactive = True
)
mdxnet_denoise = gr.Checkbox(
label = "Denoise",
info = "Enable denoising during separation.",
value = True,
interactive = True
)
with gr.Row():
mdxnet_audio = gr.Audio(
label = "Input Audio",
type = "numpy",
interactive = True
)
with gr.Accordion("Separation by Link", open = False):
with gr.Row():
mdxnet_link = gr.Textbox(
label = "Link",
placeholder = "Paste the link here",
interactive = True
)
with gr.Row():
gr.Markdown("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)")
with gr.Row():
mdxnet_download_button = gr.Button(
"Download!",
variant = "primary"
)
mdxnet_download_button.click(download_audio, [mdxnet_link], [mdxnet_audio])
with gr.Accordion("Batch Separation", open = False):
with gr.Row():
mdxnet_input_path = gr.Textbox(
label = "Input Path",
placeholder = "Place the input path here",
interactive = True
)
mdxnet_output_path = gr.Textbox(
label = "Output Path",
placeholder = "Place the output path here",
interactive = True
)
with gr.Row():
mdxnet_bath_button = gr.Button("Separate!", variant = "primary")
with gr.Row():
mdxnet_info = gr.Textbox(
label = "Output Information",
interactive = False
)
mdxnet_bath_button.click(mdxnet_batch, [mdxnet_input_path, mdxnet_output_path, mdxnet_model, mdxnet_output_format, mdxnet_overlap, mdxnet_segment_size, mdxnet_denoise], [mdxnet_info])
with gr.Row():
mdxnet_button = gr.Button("Separate!", variant = "primary")
with gr.Row():
mdxnet_stem1 = gr.Audio(
show_download_button = True,
interactive = False,
label = "instrumental",
type = "filepath"
)
mdxnet_stem2 = gr.Audio(
show_download_button = True,
interactive = False,
label = "vocal",
type = "filepath"
)
mdxnet_button.click(mdxnet_separator, [mdxnet_audio, mdxnet_model, mdxnet_output_format, mdxnet_segment_size, mdxnet_overlap, mdxnet_denoise], [mdxnet_stem1, mdxnet_stem2])
with gr.TabItem("Credits"):
gr.Markdown(
"""
UVR5 UI created by **[Eddycrack 864](https://github.com/Eddycrack864).** Join **[AI HUB](https://discord.gg/aihub)** community.
* python-audio-separator by [beveradb](https://github.com/beveradb).
* Special thanks to [Ilaria](https://github.com/TheStingerX) for hosting this space and help.
* Thanks to [Mikus](https://github.com/cappuch) for the help with the code.
* Thanks to [Nick088](https://huggingface.co/Nick088) for the help to fix roformers.
* Thanks to [yt_dlp](https://github.com/yt-dlp/yt-dlp) devs.
* Separation by link source code and improvements by [Blane187](https://huggingface.co/Blane187).
You can donate to the original UVR5 project here:
[!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/uvr5)
"""
)
app.launch(share=True, debug=True) |