File size: 5,267 Bytes
7ff2ba3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from typing import List, Tuple

import torch
from torch import nn
from torch.nn import Conv1d, Conv2d
from torch.nn import functional as F
from torch.nn.utils import spectral_norm, weight_norm

from .residuals import LRELU_SLOPE
from .utils import get_padding


class MultiPeriodDiscriminator(torch.nn.Module):
    """
    version: 'v1' or 'v2'
    """

    def __init__(
        self, version: str, use_spectral_norm: bool = False, has_xpu: bool = False
    ):
        super(MultiPeriodDiscriminator, self).__init__()
        periods = (
            (2, 3, 5, 7, 11, 17) if version == "v1" else (2, 3, 5, 7, 11, 17, 23, 37)
        )

        self.discriminators = nn.ModuleList(
            [
                DiscriminatorS(use_spectral_norm=use_spectral_norm),
                *(
                    DiscriminatorP(
                        i, use_spectral_norm=use_spectral_norm, has_xpu=has_xpu
                    )
                    for i in periods
                ),
            ]
        )

    def __call__(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
        List[torch.Tensor],
        List[torch.Tensor],
        List[List[torch.Tensor]],
        List[List[torch.Tensor]],
    ]:
        return super().__call__(y, y_hat)

    def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
        List[torch.Tensor],
        List[torch.Tensor],
        List[List[torch.Tensor]],
        List[List[torch.Tensor]],
    ]:
        y_d_rs = []
        y_d_gs = []
        fmap_rs = []
        fmap_gs = []

        for d in self.discriminators:
            y_d_r, fmap_r = d(y)
            y_d_g, fmap_g = d(y_hat)
            y_d_rs.append(y_d_r)
            y_d_gs.append(y_d_g)
            fmap_rs.append(fmap_r)
            fmap_gs.append(fmap_g)

        return y_d_rs, y_d_gs, fmap_rs, fmap_gs


class DiscriminatorS(torch.nn.Module):
    def __init__(self, use_spectral_norm: bool = False):
        super(DiscriminatorS, self).__init__()
        norm_f = spectral_norm if use_spectral_norm else weight_norm

        self.convs = nn.ModuleList(
            [
                norm_f(Conv1d(1, 16, 15, 1, padding=7)),
                norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
                norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
                norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
                norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
                norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
            ]
        )
        self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))

    def __call__(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
        return super().__call__(x)

    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
        fmap = []

        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, LRELU_SLOPE)
            fmap.append(x)

        x = self.conv_post(x)
        fmap.append(x)
        x = torch.flatten(x, 1, -1)

        return x, fmap


class DiscriminatorP(torch.nn.Module):
    def __init__(
        self,
        period: int,
        kernel_size: int = 5,
        stride: int = 3,
        use_spectral_norm: bool = False,
        has_xpu: bool = False,
    ):
        super(DiscriminatorP, self).__init__()
        self.period = period
        self.has_xpu = has_xpu
        norm_f = spectral_norm if use_spectral_norm else weight_norm
        sequence = (1, 32, 128, 512, 1024)
        convs_padding = (get_padding(kernel_size, 1), 0)

        self.convs = nn.ModuleList()
        for i in range(len(sequence) - 1):
            self.convs.append(
                norm_f(
                    Conv2d(
                        sequence[i],
                        sequence[i + 1],
                        (kernel_size, 1),
                        (stride, 1),
                        padding=convs_padding,
                    )
                )
            )
        self.convs.append(
            norm_f(
                Conv2d(
                    1024,
                    1024,
                    (kernel_size, 1),
                    1,
                    padding=convs_padding,
                )
            )
        )
        self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))

    def __call__(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
        return super().__call__(x)

    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
        fmap = []

        # 1d to 2d
        b, c, t = x.shape
        if t % self.period != 0:  # pad first
            n_pad = self.period - (t % self.period)
            if self.has_xpu and x.dtype == torch.bfloat16:
                x = F.pad(x.to(dtype=torch.float16), (0, n_pad), "reflect").to(
                    dtype=torch.bfloat16
                )
            else:
                x = F.pad(x, (0, n_pad), "reflect")
            t = t + n_pad
        x = x.view(b, c, t // self.period, self.period)

        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, LRELU_SLOPE)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        x = torch.flatten(x, 1, -1)

        return x, fmap