|
from typing import List, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class ConvBlockRes(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
momentum: float = 0.01, |
|
): |
|
super(ConvBlockRes, self).__init__() |
|
self.conv = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=(3, 3), |
|
stride=(1, 1), |
|
padding=(1, 1), |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(out_channels, momentum=momentum), |
|
nn.ReLU(), |
|
nn.Conv2d( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=(3, 3), |
|
stride=(1, 1), |
|
padding=(1, 1), |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(out_channels, momentum=momentum), |
|
nn.ReLU(), |
|
) |
|
|
|
if in_channels != out_channels: |
|
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1)) |
|
|
|
def forward(self, x: torch.Tensor): |
|
if not hasattr(self, "shortcut"): |
|
return self.conv(x) + x |
|
else: |
|
return self.conv(x) + self.shortcut(x) |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
in_size: int, |
|
n_encoders: int, |
|
kernel_size: Tuple[int, int], |
|
n_blocks: int, |
|
out_channels=16, |
|
momentum=0.01, |
|
): |
|
super(Encoder, self).__init__() |
|
self.n_encoders = n_encoders |
|
|
|
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum) |
|
self.layers = nn.ModuleList() |
|
for _ in range(self.n_encoders): |
|
self.layers.append( |
|
ResEncoderBlock( |
|
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum |
|
) |
|
) |
|
in_channels = out_channels |
|
out_channels *= 2 |
|
in_size //= 2 |
|
self.out_size = in_size |
|
self.out_channel = out_channels |
|
|
|
def __call__(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: |
|
return super().__call__(x) |
|
|
|
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: |
|
concat_tensors: List[torch.Tensor] = [] |
|
x = self.bn(x) |
|
for layer in self.layers: |
|
t, x = layer(x) |
|
concat_tensors.append(t) |
|
return x, concat_tensors |
|
|
|
|
|
class ResEncoderBlock(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: Tuple[int, int], |
|
n_blocks=1, |
|
momentum=0.01, |
|
): |
|
super(ResEncoderBlock, self).__init__() |
|
self.n_blocks = n_blocks |
|
self.kernel_size = kernel_size |
|
|
|
self.conv = nn.ModuleList() |
|
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum)) |
|
for _ in range(n_blocks - 1): |
|
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum)) |
|
|
|
if self.kernel_size is not None: |
|
self.pool = nn.AvgPool2d(kernel_size=kernel_size) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
for conv in self.conv: |
|
x = conv(x) |
|
if self.kernel_size is not None: |
|
return x, self.pool(x) |
|
return x |
|
|
|
|
|
class Intermediate(nn.Module): |
|
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01): |
|
super(Intermediate, self).__init__() |
|
|
|
self.layers = nn.ModuleList() |
|
self.layers.append( |
|
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum) |
|
) |
|
for _ in range(n_inters - 1): |
|
self.layers.append( |
|
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum) |
|
) |
|
|
|
def forward(self, x): |
|
for layer in self.layers: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
class ResDecoderBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01): |
|
super(ResDecoderBlock, self).__init__() |
|
out_padding = (0, 1) if stride == (1, 2) else (1, 1) |
|
|
|
self.conv1 = nn.Sequential( |
|
nn.ConvTranspose2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=(3, 3), |
|
stride=stride, |
|
padding=(1, 1), |
|
output_padding=out_padding, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(out_channels, momentum=momentum), |
|
nn.ReLU(), |
|
) |
|
self.conv2 = nn.ModuleList() |
|
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum)) |
|
for _ in range(n_blocks - 1): |
|
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum)) |
|
|
|
def forward(self, x, concat_tensor): |
|
x = self.conv1(x) |
|
x = torch.cat((x, concat_tensor), dim=1) |
|
for conv2 in self.conv2: |
|
x = conv2(x) |
|
return x |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01): |
|
super(Decoder, self).__init__() |
|
|
|
self.layers = nn.ModuleList() |
|
self.n_decoders = n_decoders |
|
for _ in range(self.n_decoders): |
|
out_channels = in_channels // 2 |
|
self.layers.append( |
|
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum) |
|
) |
|
in_channels = out_channels |
|
|
|
def forward(self, x: torch.Tensor, concat_tensors: List[torch.Tensor]): |
|
for i, layer in enumerate(self.layers): |
|
x = layer(x, concat_tensors[-1 - i]) |
|
return x |
|
|
|
|
|
class DeepUnet(nn.Module): |
|
def __init__( |
|
self, |
|
kernel_size: Tuple[int, int], |
|
n_blocks: int, |
|
en_de_layers=5, |
|
inter_layers=4, |
|
in_channels=1, |
|
en_out_channels=16, |
|
): |
|
super(DeepUnet, self).__init__() |
|
self.encoder = Encoder( |
|
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels |
|
) |
|
self.intermediate = Intermediate( |
|
self.encoder.out_channel // 2, |
|
self.encoder.out_channel, |
|
inter_layers, |
|
n_blocks, |
|
) |
|
self.decoder = Decoder( |
|
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x, concat_tensors = self.encoder(x) |
|
x = self.intermediate(x) |
|
x = self.decoder(x, concat_tensors) |
|
return x |
|
|