|
import math |
|
from typing import Tuple, Optional |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from .attentions import MultiHeadAttention, FFN |
|
from .norms import LayerNorm, WN |
|
from .utils import sequence_mask |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_channels: int, |
|
filter_channels: int, |
|
n_heads: int, |
|
n_layers: int, |
|
kernel_size: int = 1, |
|
p_dropout: float = 0.0, |
|
window_size: int = 10, |
|
): |
|
super(Encoder, self).__init__() |
|
|
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.window_size = window_size |
|
|
|
self.drop = nn.Dropout(p_dropout) |
|
self.attn_layers = nn.ModuleList() |
|
self.norm_layers_1 = nn.ModuleList() |
|
self.ffn_layers = nn.ModuleList() |
|
self.norm_layers_2 = nn.ModuleList() |
|
|
|
for _ in range(self.n_layers): |
|
self.attn_layers.append( |
|
MultiHeadAttention( |
|
hidden_channels, |
|
hidden_channels, |
|
n_heads, |
|
p_dropout=p_dropout, |
|
window_size=window_size, |
|
) |
|
) |
|
self.norm_layers_1.append(LayerNorm(hidden_channels)) |
|
self.ffn_layers.append( |
|
FFN( |
|
hidden_channels, |
|
hidden_channels, |
|
filter_channels, |
|
kernel_size, |
|
p_dropout=p_dropout, |
|
) |
|
) |
|
self.norm_layers_2.append(LayerNorm(hidden_channels)) |
|
|
|
def __call__(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor: |
|
return super().__call__(x, x_mask) |
|
|
|
def forward(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor: |
|
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) |
|
x = x * x_mask |
|
for attn, norm1, ffn, norm2 in zip( |
|
self.attn_layers, |
|
self.norm_layers_1, |
|
self.ffn_layers, |
|
self.norm_layers_2, |
|
): |
|
y = attn(x, x, attn_mask) |
|
y = self.drop(y) |
|
x = norm1(x + y) |
|
|
|
y = ffn(x, x_mask) |
|
y = self.drop(y) |
|
x = norm2(x + y) |
|
x = x * x_mask |
|
return x |
|
|
|
|
|
class TextEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
hidden_channels: int, |
|
filter_channels: int, |
|
n_heads: int, |
|
n_layers: int, |
|
kernel_size: int, |
|
p_dropout: float, |
|
f0: bool = True, |
|
): |
|
super(TextEncoder, self).__init__() |
|
|
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = float(p_dropout) |
|
|
|
self.emb_phone = nn.Linear(in_channels, hidden_channels) |
|
self.lrelu = nn.LeakyReLU(0.1, inplace=True) |
|
if f0 == True: |
|
self.emb_pitch = nn.Embedding(256, hidden_channels) |
|
self.encoder = Encoder( |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
float(p_dropout), |
|
) |
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) |
|
|
|
def __call__( |
|
self, |
|
phone: torch.Tensor, |
|
pitch: torch.Tensor, |
|
lengths: torch.Tensor, |
|
skip_head: Optional[int] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
return super().__call__( |
|
phone, |
|
pitch, |
|
lengths, |
|
skip_head=skip_head, |
|
) |
|
|
|
def forward( |
|
self, |
|
phone: torch.Tensor, |
|
pitch: torch.Tensor, |
|
lengths: torch.Tensor, |
|
skip_head: Optional[int] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
x = self.emb_phone(phone) |
|
if pitch is not None: |
|
x += self.emb_pitch(pitch) |
|
x = x * math.sqrt(self.hidden_channels) |
|
x = self.lrelu(x) |
|
x = torch.transpose(x, 1, -1) |
|
x_mask = torch.unsqueeze( |
|
sequence_mask(lengths, x.size(2)), |
|
1, |
|
).to(x.dtype) |
|
x = self.encoder(x * x_mask, x_mask) |
|
if skip_head is not None: |
|
head = int(skip_head) |
|
x = x[:, :, head:] |
|
x_mask = x_mask[:, :, head:] |
|
stats: torch.Tensor = self.proj(x) * x_mask |
|
m, logs = torch.split(stats, self.out_channels, dim=1) |
|
return m, logs, x_mask |
|
|
|
|
|
class PosteriorEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
hidden_channels: int, |
|
kernel_size: int, |
|
dilation_rate: int, |
|
n_layers: int, |
|
gin_channels=0, |
|
): |
|
super(PosteriorEncoder, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.gin_channels = gin_channels |
|
|
|
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) |
|
self.enc = WN( |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=gin_channels, |
|
) |
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) |
|
|
|
def __call__( |
|
self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
return super().__call__(x, x_lengths, g=g) |
|
|
|
def forward( |
|
self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
x_mask = torch.unsqueeze( |
|
sequence_mask(x_lengths, x.size(2)), |
|
1, |
|
).to(x.dtype) |
|
x = self.pre(x) * x_mask |
|
x = self.enc(x, x_mask, g=g) |
|
stats = self.proj(x) * x_mask |
|
m, logs = torch.split(stats, self.out_channels, dim=1) |
|
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask |
|
return z, m, logs, x_mask |
|
|
|
def remove_weight_norm(self): |
|
self.enc.remove_weight_norm() |
|
|
|
def __prepare_scriptable__(self): |
|
for hook in self.enc._forward_pre_hooks.values(): |
|
if ( |
|
hook.__module__ == "torch.nn.utils.weight_norm" |
|
and hook.__class__.__name__ == "WeightNorm" |
|
): |
|
torch.nn.utils.remove_weight_norm(self.enc) |
|
return self |
|
|