rvc-ui / rvc /layers /generators.py
Blane187's picture
Upload folder using huggingface_hub
7ff2ba3 verified
raw
history blame
8.52 kB
from typing import Optional, List, Tuple
import torch
from torch import nn
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn import functional as F
from torch.nn.utils import remove_weight_norm, weight_norm
from .residuals import ResBlock1, ResBlock2, LRELU_SLOPE
from .utils import call_weight_data_normal_if_Conv
class Generator(torch.nn.Module):
def __init__(
self,
initial_channel: int,
resblock: str,
resblock_kernel_sizes: List[int],
resblock_dilation_sizes: List[List[int]],
upsample_rates: List[int],
upsample_initial_channel: int,
upsample_kernel_sizes: List[int],
gin_channels: int = 0,
):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.conv_pre = Conv1d(
initial_channel, upsample_initial_channel, 7, 1, padding=3
)
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(
weight_norm(
ConvTranspose1d(
upsample_initial_channel // (2**i),
upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
self.resblocks = nn.ModuleList()
resblock_module = ResBlock1 if resblock == "1" else ResBlock2
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes):
self.resblocks.append(resblock_module(ch, k, d))
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
self.ups.apply(call_weight_data_normal_if_Conv)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
def __call__(
self,
x: torch.Tensor,
g: Optional[torch.Tensor] = None,
n_res: Optional[int] = None,
) -> torch.Tensor:
return super().__call__(x, g=g, n_res=n_res)
def forward(
self,
x: torch.Tensor,
g: Optional[torch.Tensor] = None,
n_res: Optional[int] = None,
):
if n_res is not None:
n = int(n_res)
if n != x.shape[-1]:
x = F.interpolate(x, size=n, mode="linear")
x = self.conv_pre(x)
if g is not None:
x = x + self.cond(g)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
n = i * self.num_kernels
xs = self.resblocks[n](x)
for j in range(1, self.num_kernels):
xs += self.resblocks[n + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def __prepare_scriptable__(self):
for l in self.ups:
for hook in l._forward_pre_hooks.values():
# The hook we want to remove is an instance of WeightNorm class, so
# normally we would do `if isinstance(...)` but this class is not accessible
# because of shadowing, so we check the module name directly.
# https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3
if (
hook.__module__ == "torch.nn.utils.weight_norm"
and hook.__class__.__name__ == "WeightNorm"
):
torch.nn.utils.remove_weight_norm(l)
for l in self.resblocks:
for hook in l._forward_pre_hooks.values():
if (
hook.__module__ == "torch.nn.utils.weight_norm"
and hook.__class__.__name__ == "WeightNorm"
):
torch.nn.utils.remove_weight_norm(l)
return self
def remove_weight_norm(self):
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
class SineGenerator(torch.nn.Module):
"""Definition of sine generator
SineGenerator(samp_rate, harmonic_num = 0,
sine_amp = 0.1, noise_std = 0.003,
voiced_threshold = 0,
flag_for_pulse=False)
samp_rate: sampling rate in Hz
harmonic_num: number of harmonic overtones (default 0)
sine_amp: amplitude of sine-wavefrom (default 0.1)
noise_std: std of Gaussian noise (default 0.003)
voiced_thoreshold: F0 threshold for U/V classification (default 0)
flag_for_pulse: this SinGen is used inside PulseGen (default False)
Note: when flag_for_pulse is True, the first time step of a voiced
segment is always sin(torch.pi) or cos(0)
"""
def __init__(
self,
samp_rate: int,
harmonic_num: int = 0,
sine_amp: float = 0.1,
noise_std: float = 0.003,
voiced_threshold: int = 0,
):
super(SineGenerator, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = harmonic_num + 1
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
def __call__(
self, f0: torch.Tensor, upp: int
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
return super().__call__(f0, upp)
def forward(
self, f0: torch.Tensor, upp: int
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""sine_tensor, uv = forward(f0)
input F0: tensor(batchsize=1, length, dim=1)
f0 for unvoiced steps should be 0
output sine_tensor: tensor(batchsize=1, length, dim)
output uv: tensor(batchsize=1, length, 1)
"""
with torch.no_grad():
f0 = f0[:, None].transpose(1, 2)
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
# fundamental component
f0_buf[:, :, 0] = f0[:, :, 0]
for idx in range(self.harmonic_num):
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
idx + 2
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
rad_values = (
f0_buf / self.sampling_rate
) % 1 ###%1意味着n_har的乘积无法后处理优化
rand_ini = torch.rand(
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
)
rand_ini[:, 0] = 0
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
tmp_over_one = torch.cumsum(
rad_values, 1
) # % 1 #####%1意味着后面的cumsum无法再优化
tmp_over_one *= upp
tmp_over_one: torch.Tensor = F.interpolate(
tmp_over_one.transpose(2, 1),
scale_factor=float(upp),
mode="linear",
align_corners=True,
).transpose(2, 1)
rad_values: torch.Tensor = F.interpolate(
rad_values.transpose(2, 1), scale_factor=float(upp), mode="nearest"
).transpose(
2, 1
) #######
tmp_over_one %= 1
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
cumsum_shift = torch.zeros_like(rad_values)
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
sine_waves = torch.sin(
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * torch.pi
)
sine_waves = sine_waves * self.sine_amp
uv = self._f02uv(f0)
uv: torch.Tensor = F.interpolate(
uv.transpose(2, 1), scale_factor=float(upp), mode="nearest"
).transpose(2, 1)
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
sine_waves = sine_waves * uv + noise
return sine_waves, uv, noise
def _f02uv(self, f0):
# generate uv signal
uv = torch.ones_like(f0)
uv = uv * (f0 > self.voiced_threshold)
if uv.device.type == "privateuseone": # for DirectML
uv = uv.float()
return uv