|
from typing import Optional, List |
|
import math |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import Conv1d, ConvTranspose1d |
|
from torch.nn import functional as F |
|
from torch.nn.utils import remove_weight_norm, weight_norm |
|
|
|
from .generators import SineGenerator |
|
from .residuals import ResBlock1, ResBlock2, LRELU_SLOPE |
|
from .utils import call_weight_data_normal_if_Conv |
|
|
|
|
|
class SourceModuleHnNSF(torch.nn.Module): |
|
"""SourceModule for hn-nsf |
|
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, |
|
add_noise_std=0.003, voiced_threshod=0) |
|
sampling_rate: sampling_rate in Hz |
|
harmonic_num: number of harmonic above F0 (default: 0) |
|
sine_amp: amplitude of sine source signal (default: 0.1) |
|
add_noise_std: std of additive Gaussian noise (default: 0.003) |
|
note that amplitude of noise in unvoiced is decided |
|
by sine_amp |
|
voiced_threshold: threhold to set U/V given F0 (default: 0) |
|
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) |
|
F0_sampled (batchsize, length, 1) |
|
Sine_source (batchsize, length, 1) |
|
noise_source (batchsize, length 1) |
|
uv (batchsize, length, 1) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
sampling_rate: int, |
|
harmonic_num: int = 0, |
|
sine_amp: float = 0.1, |
|
add_noise_std: float = 0.003, |
|
voiced_threshod: int = 0, |
|
): |
|
super(SourceModuleHnNSF, self).__init__() |
|
|
|
self.sine_amp = sine_amp |
|
self.noise_std = add_noise_std |
|
|
|
self.l_sin_gen = SineGenerator( |
|
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod |
|
) |
|
|
|
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) |
|
self.l_tanh = torch.nn.Tanh() |
|
|
|
def __call__(self, x: torch.Tensor, upp: int = 1) -> torch.Tensor: |
|
return super().__call__(x, upp=upp) |
|
|
|
def forward(self, x: torch.Tensor, upp: int = 1) -> torch.Tensor: |
|
sine_wavs, _, _ = self.l_sin_gen(x, upp) |
|
sine_wavs = sine_wavs.to(dtype=self.l_linear.weight.dtype) |
|
sine_merge: torch.Tensor = self.l_tanh(self.l_linear(sine_wavs)) |
|
return sine_merge |
|
|
|
|
|
class NSFGenerator(torch.nn.Module): |
|
def __init__( |
|
self, |
|
initial_channel: int, |
|
resblock: str, |
|
resblock_kernel_sizes: List[int], |
|
resblock_dilation_sizes: List[List[int]], |
|
upsample_rates: List[int], |
|
upsample_initial_channel: int, |
|
upsample_kernel_sizes: List[int], |
|
gin_channels: int, |
|
sr: int, |
|
): |
|
super(NSFGenerator, self).__init__() |
|
self.num_kernels = len(resblock_kernel_sizes) |
|
self.num_upsamples = len(upsample_rates) |
|
|
|
self.f0_upsamp = torch.nn.Upsample(scale_factor=math.prod(upsample_rates)) |
|
self.m_source = SourceModuleHnNSF(sampling_rate=sr, harmonic_num=0) |
|
self.noise_convs = nn.ModuleList() |
|
self.conv_pre = Conv1d( |
|
initial_channel, upsample_initial_channel, 7, 1, padding=3 |
|
) |
|
resblock = ResBlock1 if resblock == "1" else ResBlock2 |
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): |
|
c_cur = upsample_initial_channel // (2 ** (i + 1)) |
|
self.ups.append( |
|
weight_norm( |
|
ConvTranspose1d( |
|
upsample_initial_channel // (2**i), |
|
upsample_initial_channel // (2 ** (i + 1)), |
|
k, |
|
u, |
|
padding=(k - u) // 2, |
|
) |
|
) |
|
) |
|
if i + 1 < len(upsample_rates): |
|
stride_f0 = math.prod(upsample_rates[i + 1 :]) |
|
self.noise_convs.append( |
|
Conv1d( |
|
1, |
|
c_cur, |
|
kernel_size=stride_f0 * 2, |
|
stride=stride_f0, |
|
padding=stride_f0 // 2, |
|
) |
|
) |
|
else: |
|
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) |
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch: int = upsample_initial_channel // (2 ** (i + 1)) |
|
for j, (k, d) in enumerate( |
|
zip(resblock_kernel_sizes, resblock_dilation_sizes) |
|
): |
|
self.resblocks.append(resblock(ch, k, d)) |
|
|
|
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) |
|
self.ups.apply(call_weight_data_normal_if_Conv) |
|
|
|
if gin_channels != 0: |
|
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) |
|
|
|
self.upp = math.prod(upsample_rates) |
|
|
|
self.lrelu_slope = LRELU_SLOPE |
|
|
|
def __call__( |
|
self, |
|
x: torch.Tensor, |
|
f0: torch.Tensor, |
|
g: Optional[torch.Tensor] = None, |
|
n_res: Optional[int] = None, |
|
) -> torch.Tensor: |
|
return super().__call__(x, f0, g=g, n_res=n_res) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
f0: torch.Tensor, |
|
g: Optional[torch.Tensor] = None, |
|
n_res: Optional[int] = None, |
|
) -> torch.Tensor: |
|
har_source = self.m_source(f0, self.upp) |
|
har_source = har_source.transpose(1, 2) |
|
|
|
if n_res is not None: |
|
n_res = int(n_res) |
|
if n_res * self.upp != har_source.shape[-1]: |
|
har_source = F.interpolate( |
|
har_source, size=n_res * self.upp, mode="linear" |
|
) |
|
if n_res != x.shape[-1]: |
|
x = F.interpolate(x, size=n_res, mode="linear") |
|
|
|
x = self.conv_pre(x) |
|
if g is not None: |
|
x = x + self.cond(g) |
|
|
|
|
|
for i, (ups, noise_convs) in enumerate(zip(self.ups, self.noise_convs)): |
|
if i < self.num_upsamples: |
|
x = F.leaky_relu(x, self.lrelu_slope) |
|
x = ups(x) |
|
x_source = noise_convs(har_source) |
|
x = x + x_source |
|
xs: Optional[torch.Tensor] = None |
|
l = [i * self.num_kernels + j for j in range(self.num_kernels)] |
|
for j, resblock in enumerate(self.resblocks): |
|
if j in l: |
|
if xs is None: |
|
xs = resblock(x) |
|
else: |
|
xs += resblock(x) |
|
|
|
|
|
assert isinstance(xs, torch.Tensor) |
|
x = xs / self.num_kernels |
|
x = F.leaky_relu(x) |
|
x = self.conv_post(x) |
|
x = torch.tanh(x) |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.ups: |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
|
|
def __prepare_scriptable__(self): |
|
for l in self.ups: |
|
for hook in l._forward_pre_hooks.values(): |
|
|
|
|
|
|
|
|
|
if ( |
|
hook.__module__ == "torch.nn.utils.weight_norm" |
|
and hook.__class__.__name__ == "WeightNorm" |
|
): |
|
torch.nn.utils.remove_weight_norm(l) |
|
for l in self.resblocks: |
|
for hook in self.resblocks._forward_pre_hooks.values(): |
|
if ( |
|
hook.__module__ == "torch.nn.utils.weight_norm" |
|
and hook.__class__.__name__ == "WeightNorm" |
|
): |
|
torch.nn.utils.remove_weight_norm(l) |
|
return self |
|
|