|
from typing import Optional, List, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import Conv1d
|
|
from torch.nn import functional as F
|
|
from torch.nn.utils import remove_weight_norm, weight_norm
|
|
|
|
from .norms import WN
|
|
from .utils import (
|
|
get_padding,
|
|
call_weight_data_normal_if_Conv,
|
|
)
|
|
|
|
LRELU_SLOPE = 0.1
|
|
|
|
|
|
class ResBlock1(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
kernel_size: int = 3,
|
|
dilation: List[int] = (1, 3, 5),
|
|
):
|
|
super(ResBlock1, self).__init__()
|
|
|
|
self.convs1 = nn.ModuleList()
|
|
for d in dilation:
|
|
self.convs1.append(
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=d,
|
|
padding=get_padding(kernel_size, d),
|
|
)
|
|
),
|
|
)
|
|
self.convs1.apply(call_weight_data_normal_if_Conv)
|
|
|
|
self.convs2 = nn.ModuleList()
|
|
for _ in dilation:
|
|
self.convs2.append(
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=1,
|
|
padding=get_padding(kernel_size, 1),
|
|
)
|
|
),
|
|
)
|
|
self.convs2.apply(call_weight_data_normal_if_Conv)
|
|
self.lrelu_slope = LRELU_SLOPE
|
|
|
|
def __call__(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
return super().__call__(x, x_mask=x_mask)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
for c1, c2 in zip(self.convs1, self.convs2):
|
|
xt = F.leaky_relu(x, self.lrelu_slope)
|
|
if x_mask is not None:
|
|
xt = xt * x_mask
|
|
xt = c1(xt)
|
|
xt = F.leaky_relu(xt, self.lrelu_slope)
|
|
if x_mask is not None:
|
|
xt = xt * x_mask
|
|
xt = c2(xt)
|
|
x = xt + x
|
|
if x_mask is not None:
|
|
x = x * x_mask
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
for l in self.convs1:
|
|
remove_weight_norm(l)
|
|
for l in self.convs2:
|
|
remove_weight_norm(l)
|
|
|
|
def __prepare_scriptable__(self):
|
|
for l in self.convs1:
|
|
for hook in l._forward_pre_hooks.values():
|
|
if (
|
|
hook.__module__ == "torch.nn.utils.weight_norm"
|
|
and hook.__class__.__name__ == "WeightNorm"
|
|
):
|
|
torch.nn.utils.remove_weight_norm(l)
|
|
for l in self.convs2:
|
|
for hook in l._forward_pre_hooks.values():
|
|
if (
|
|
hook.__module__ == "torch.nn.utils.weight_norm"
|
|
and hook.__class__.__name__ == "WeightNorm"
|
|
):
|
|
torch.nn.utils.remove_weight_norm(l)
|
|
return self
|
|
|
|
|
|
class ResBlock2(torch.nn.Module):
|
|
"""
|
|
Actually this module is not used currently
|
|
because all configs specified "resblock": "1"
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
kernel_size=3,
|
|
dilation: List[int] = (1, 3),
|
|
):
|
|
super(ResBlock2, self).__init__()
|
|
self.convs = nn.ModuleList()
|
|
for d in dilation:
|
|
self.convs.append(
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=d,
|
|
padding=get_padding(kernel_size, d),
|
|
)
|
|
),
|
|
)
|
|
self.convs.apply(call_weight_data_normal_if_Conv)
|
|
self.lrelu_slope = LRELU_SLOPE
|
|
|
|
def __call__(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
return super().__call__(x, x_mask=x_mask)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
for c in self.convs:
|
|
xt = F.leaky_relu(x, self.lrelu_slope)
|
|
if x_mask is not None:
|
|
xt = xt * x_mask
|
|
xt = c(xt)
|
|
x = xt + x
|
|
if x_mask is not None:
|
|
x = x * x_mask
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
for l in self.convs:
|
|
remove_weight_norm(l)
|
|
|
|
def __prepare_scriptable__(self):
|
|
for l in self.convs:
|
|
for hook in l._forward_pre_hooks.values():
|
|
if (
|
|
hook.__module__ == "torch.nn.utils.weight_norm"
|
|
and hook.__class__.__name__ == "WeightNorm"
|
|
):
|
|
torch.nn.utils.remove_weight_norm(l)
|
|
return self
|
|
|
|
|
|
class ResidualCouplingLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
hidden_channels: int,
|
|
kernel_size: int,
|
|
dilation_rate: int,
|
|
n_layers: int,
|
|
p_dropout: int = 0,
|
|
gin_channels: int = 0,
|
|
mean_only: bool = False,
|
|
):
|
|
assert channels % 2 == 0, "channels should be divisible by 2"
|
|
super(ResidualCouplingLayer, self).__init__()
|
|
self.channels = channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
self.half_channels = channels // 2
|
|
self.mean_only = mean_only
|
|
|
|
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
|
self.enc = WN(
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
p_dropout=float(p_dropout),
|
|
gin_channels=gin_channels,
|
|
)
|
|
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
|
self.post.weight.data.zero_()
|
|
self.post.bias.data.zero_()
|
|
|
|
def __call__(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: torch.Tensor,
|
|
g: Optional[torch.Tensor] = None,
|
|
reverse: bool = False,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
return super().__call__(x, x_mask, g=g, reverse=reverse)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: torch.Tensor,
|
|
g: Optional[torch.Tensor] = None,
|
|
reverse: bool = False,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
|
h = self.pre(x0) * x_mask
|
|
h = self.enc(h, x_mask, g=g)
|
|
stats = self.post(h) * x_mask
|
|
if not self.mean_only:
|
|
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
|
else:
|
|
m = stats
|
|
logs = torch.zeros_like(m)
|
|
|
|
if not reverse:
|
|
x1 = m + x1 * torch.exp(logs) * x_mask
|
|
x = torch.cat([x0, x1], 1)
|
|
logdet = torch.sum(logs, [1, 2])
|
|
return x, logdet
|
|
|
|
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
|
x = torch.cat([x0, x1], 1)
|
|
return x, torch.zeros([1])
|
|
|
|
def remove_weight_norm(self):
|
|
self.enc.remove_weight_norm()
|
|
|
|
def __prepare_scriptable__(self):
|
|
for hook in self.enc._forward_pre_hooks.values():
|
|
if (
|
|
hook.__module__ == "torch.nn.utils.weight_norm"
|
|
and hook.__class__.__name__ == "WeightNorm"
|
|
):
|
|
torch.nn.utils.remove_weight_norm(self.enc)
|
|
return self
|
|
|
|
|
|
class ResidualCouplingBlock(nn.Module):
|
|
class Flip(nn.Module):
|
|
"""
|
|
torch.jit.script() Compiled functions
|
|
can't take variable number of arguments or
|
|
use keyword-only arguments with defaults
|
|
"""
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: torch.Tensor,
|
|
g: Optional[torch.Tensor] = None,
|
|
reverse: bool = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
x = torch.flip(x, [1])
|
|
if not reverse:
|
|
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
|
return x, logdet
|
|
else:
|
|
return x, torch.zeros([1], device=x.device)
|
|
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
hidden_channels: int,
|
|
kernel_size: int,
|
|
dilation_rate: int,
|
|
n_layers: int,
|
|
n_flows: int = 4,
|
|
gin_channels: int = 0,
|
|
):
|
|
super(ResidualCouplingBlock, self).__init__()
|
|
self.channels = channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
self.n_flows = n_flows
|
|
self.gin_channels = gin_channels
|
|
|
|
self.flows = nn.ModuleList()
|
|
for _ in range(n_flows):
|
|
self.flows.append(
|
|
ResidualCouplingLayer(
|
|
channels,
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
gin_channels=gin_channels,
|
|
mean_only=True,
|
|
)
|
|
)
|
|
self.flows.append(self.Flip())
|
|
|
|
def __call__(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: torch.Tensor,
|
|
g: Optional[torch.Tensor] = None,
|
|
reverse: bool = False,
|
|
) -> torch.Tensor:
|
|
return super().__call__(x, x_mask, g=g, reverse=reverse)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: torch.Tensor,
|
|
g: Optional[torch.Tensor] = None,
|
|
reverse: bool = False,
|
|
) -> torch.Tensor:
|
|
if not reverse:
|
|
for flow in self.flows:
|
|
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
|
else:
|
|
for flow in reversed(self.flows):
|
|
x, _ = flow.forward(x, x_mask, g=g, reverse=reverse)
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
for i in range(self.n_flows):
|
|
self.flows[i * 2].remove_weight_norm()
|
|
|
|
def __prepare_scriptable__(self):
|
|
for i in range(self.n_flows):
|
|
for hook in self.flows[i * 2]._forward_pre_hooks.values():
|
|
if (
|
|
hook.__module__ == "torch.nn.utils.weight_norm"
|
|
and hook.__class__.__name__ == "WeightNorm"
|
|
):
|
|
torch.nn.utils.remove_weight_norm(self.flows[i * 2])
|
|
return self
|
|
|