rvc-ui / rvc /onnx /infer.py
Blane187's picture
Upload folder using huggingface_hub
7ff2ba3 verified
raw
history blame
4.9 kB
import typing
import os
import librosa
import numpy as np
import onnxruntime
from rvc.f0 import (
PM,
Harvest,
Dio,
F0Predictor,
)
class Model:
def __init__(
self,
path: typing.Union[str, bytes, os.PathLike],
device: typing.Literal["cpu", "cuda", "dml"] = "cpu",
):
if device == "cpu":
providers = ["CPUExecutionProvider"]
elif device == "cuda":
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
elif device == "dml":
providers = ["DmlExecutionProvider"]
else:
raise RuntimeError("Unsportted Device")
self.model = onnxruntime.InferenceSession(path, providers=providers)
class ContentVec(Model):
def __init__(
self,
vec_path: typing.Union[str, bytes, os.PathLike],
device: typing.Literal["cpu", "cuda", "dml"] = "cpu",
):
super().__init__(vec_path, device)
def __call__(self, wav: np.ndarray[typing.Any, np.dtype]):
return self.forward(wav)
def forward(self, wav: np.ndarray[typing.Any, np.dtype]):
if wav.ndim == 2: # double channels
wav = wav.mean(-1)
assert wav.ndim == 1, wav.ndim
wav = np.expand_dims(np.expand_dims(wav, 0), 0)
onnx_input = {self.model.get_inputs()[0].name: wav}
logits = self.model.run(None, onnx_input)[0]
return logits.transpose(0, 2, 1)
predictors: typing.Dict[str, F0Predictor] = {
"pm": PM,
"harvest": Harvest,
"dio": Dio,
}
def get_f0_predictor(
f0_method: str, hop_length: int, sampling_rate: int
) -> F0Predictor:
return predictors[f0_method](hop_length=hop_length, sampling_rate=sampling_rate)
class RVC(Model):
def __init__(
self,
model_path: typing.Union[str, bytes, os.PathLike],
hop_len=512,
vec_path: typing.Union[str, bytes, os.PathLike] = "vec-768-layer-12.onnx",
device: typing.Literal["cpu", "cuda", "dml"] = "cpu",
):
super().__init__(model_path, device)
self.vec_model = ContentVec(vec_path, device)
self.hop_len = hop_len
def infer(
self,
wav: np.ndarray[typing.Any, np.dtype],
wav_sr: int,
model_sr: int = 40000,
sid: int = 0,
f0_method="dio",
f0_up_key=0,
) -> np.ndarray[typing.Any, np.dtype[np.int16]]:
f0_min = 50
f0_max = 1100
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
f0_predictor = get_f0_predictor(
f0_method,
self.hop_len,
model_sr,
)
org_length = len(wav)
if org_length / wav_sr > 50.0:
raise RuntimeError("wav max length exceeded")
hubert = self.vec_model(librosa.resample(wav, orig_sr=wav_sr, target_sr=16000))
hubert = np.repeat(hubert, 2, axis=2).transpose(0, 2, 1).astype(np.float32)
hubert_length = hubert.shape[1]
pitchf = f0_predictor.compute_f0(wav, hubert_length)
pitchf = pitchf * 2 ** (f0_up_key / 12)
pitch = pitchf.copy()
f0_mel = 1127 * np.log(1 + pitch / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
f0_mel_max - f0_mel_min
) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
pitch = np.rint(f0_mel).astype(np.int64)
pitchf = pitchf.reshape(1, len(pitchf)).astype(np.float32)
pitch = pitch.reshape(1, len(pitch))
ds = np.array([sid]).astype(np.int64)
rnd = np.random.randn(1, 192, hubert_length).astype(np.float32)
hubert_length = np.array([hubert_length]).astype(np.int64)
out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze()
out_wav = np.pad(out_wav, (0, 2 * self.hop_len), "constant")
return out_wav[0:org_length]
def forward(
self,
hubert: np.ndarray[typing.Any, np.dtype[np.float32]],
hubert_length: int,
pitch: np.ndarray[typing.Any, np.dtype[np.int64]],
pitchf: np.ndarray[typing.Any, np.dtype[np.float32]],
ds: np.ndarray[typing.Any, np.dtype[np.int64]],
rnd: np.ndarray[typing.Any, np.dtype[np.float32]],
) -> np.ndarray[typing.Any, np.dtype[np.int16]]:
onnx_input = {
self.model.get_inputs()[0].name: hubert,
self.model.get_inputs()[1].name: hubert_length,
self.model.get_inputs()[2].name: pitch,
self.model.get_inputs()[3].name: pitchf,
self.model.get_inputs()[4].name: ds,
self.model.get_inputs()[5].name: rnd,
}
return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16)