|
import gradio as gr |
|
import cv2 |
|
import requests |
|
import os |
|
import random |
|
|
|
from ultralytics import YOLO |
|
|
|
file_urls = [ |
|
'https://www.dropbox.com/scl/fi/5pavu4vvkprrtkwktvei7/DSC02373.JPG?rlkey=fpj636qtkf3vrqfxy45n2d9ii&dl=1', |
|
'https://www.dropbox.com/scl/fi/56pbn4r3ohk85rchcvwdj/DSC02813.JPG?rlkey=jnbsidqtthk6p4ysld6o6kc4t&dl=1', |
|
'https://www.dropbox.com/scl/fi/av9g5zbmrrzg9064zivat/image_2.jpg?rlkey=ldocvzz5lq98zffqf1lmhbhv1&dl=1', |
|
'https://www.dropbox.com/scl/fi/izo2eqqnqzcsaxis1qrbx/IMG_7612.JPG?rlkey=6wfjaux44khtlx454ex0ng0hp&dl=1', |
|
'https://www.dropbox.com/scl/fi/e6vgy1et6vjr61uypk5yu/VID-20230809-WA0021.mp4?rlkey=khv8rw074vezzlg8ob38bpmbx&dl=1' |
|
] |
|
|
|
def download_file(url, save_name): |
|
url = url |
|
if not os.path.exists(save_name): |
|
file = requests.get(url) |
|
open(save_name, 'wb').write(file.content) |
|
|
|
for i, url in enumerate(file_urls): |
|
if 'mp4' in file_urls[i]: |
|
download_file( |
|
file_urls[i], |
|
f"video.mp4" |
|
) |
|
else: |
|
download_file( |
|
file_urls[i], |
|
f"image_{i}.jpg" |
|
) |
|
|
|
|
|
model = YOLO('best.pt') |
|
path = [['image_0.jpg'], ['image_1.jpg'], ['image_2.jpg'], ['image_3.jpg']] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
video_path = [['video.mp4']] |
|
|
|
classes = ['alligator_cracking', 'longitudinal_cracking', 'potholes', 'ravelling'] |
|
|
|
def show_preds_image(image_path): |
|
image = cv2.imread(image_path) |
|
outputs = model.predict(source=image_path, agnostic_nms=True, conf=0.25, iou=0.4, imgsz=640) |
|
results = outputs[0].cpu().numpy() |
|
|
|
re_boxes = results.boxes.data.tolist() |
|
|
|
class_colors = {1 : (95, 255, 54), 2: (242, 210, 100), 3: (96, 7, 70), 4:(221, 59, 41)} |
|
random.seed(42) |
|
|
|
|
|
for i, det in enumerate(results.boxes.xyxy): |
|
x1, y1, x2, y2 = int(det[0]), int(det[1]), int(det[2]), int(det[3]) |
|
|
|
class_label = int(re_boxes[i][-1]) |
|
rectangle_color = class_colors.get(class_label) |
|
|
|
text_color = rectangle_color |
|
cv2.rectangle( |
|
image, |
|
(int(det[0]), int(det[1])), |
|
(int(det[2]), int(det[3])), |
|
color=rectangle_color, |
|
thickness=3, |
|
lineType=cv2.LINE_AA |
|
) |
|
|
|
text_position = (x1, y1+100) |
|
conf = re_boxes[i][-2] |
|
class_name = classes[class_label] |
|
|
|
cv2.putText(image, classes[class_label] + f' = {round(conf, 2)}', |
|
text_position, cv2.FONT_HERSHEY_SIMPLEX, 1.5, text_color, 3) |
|
|
|
|
|
|
|
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
inputs_image = [ |
|
gr.components.Image(type="filepath", label="Input Image"), |
|
] |
|
outputs_image = [ |
|
gr.components.Image(type="numpy", label="Output Image"), |
|
] |
|
interface_image = gr.Interface( |
|
fn=show_preds_image, |
|
inputs=inputs_image, |
|
outputs=outputs_image, |
|
title="Pavement Distress Detector for developing countries", |
|
examples=path, |
|
cache_examples=False, |
|
description= 'This is a demo app that takes in images or videos of Asphalt pavement surfaces and \ |
|
\n detects the following pavement distresses: \ |
|
\n \ |
|
\n Alligator cracking \ |
|
\n Longitudinal cracking \ |
|
\n Potholes \ |
|
\n Ravelling \ |
|
\n \ |
|
\n This is specifically for Inference and educational purpose.\ |
|
\n \ |
|
\n The model might ocassionaly give false outputs' |
|
) |
|
|
|
def show_preds_video(video_path): |
|
cap = cv2.VideoCapture(video_path) |
|
while(cap.isOpened()): |
|
ret, frame = cap.read() |
|
if ret: |
|
frame_copy = frame.copy() |
|
outputs = model.predict(source=frame, agnostic_nms=True, conf=0.25, iou=0.4, imgsz=640) |
|
results = outputs[0].cpu().numpy() |
|
re_boxes = results.boxes.data.tolist() |
|
|
|
class_colors = {1 : (95, 255, 54), 2: (242, 210, 100), 3: (96, 7, 70), 4:(221, 59, 41)} |
|
random.seed(42) |
|
|
|
|
|
for i, det in enumerate(results.boxes.xyxy): |
|
x1, y1, x2, y2 = int(det[0]), int(det[1]), int(det[2]), int(det[3]) |
|
|
|
class_label = int(re_boxes[i][-1]) |
|
rectangle_color = class_colors.get(class_label) |
|
|
|
text_color = rectangle_color |
|
|
|
cv2.rectangle( |
|
frame_copy, |
|
(int(det[0]), int(det[1])), |
|
(int(det[2]), int(det[3])), |
|
color=rectangle_color, |
|
thickness=2, |
|
lineType=cv2.LINE_AA |
|
) |
|
|
|
|
|
text_position = (x1, y1+100) |
|
conf = re_boxes[i][-2] |
|
class_name = classes[class_label] |
|
|
|
cv2.putText(frame_copy, classes[class_label] + f' = {round(conf, 2)}', |
|
text_position, cv2.FONT_HERSHEY_SIMPLEX, 1.5, text_color, 3) |
|
|
|
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) |
|
|
|
inputs_video = [ |
|
gr.components.Video(type="filepath", label="Input Video"), |
|
|
|
] |
|
outputs_video = [ |
|
gr.components.Image(type="numpy", label="Output Video"), |
|
] |
|
interface_video = gr.Interface( |
|
fn=show_preds_video, |
|
inputs=inputs_video, |
|
outputs=outputs_video, |
|
title="Asphalt Road Pavement Distresses Detector", |
|
examples=video_path, |
|
cache_examples=False, |
|
|
|
) |
|
gr.TabbedInterface( |
|
[interface_image, interface_video], |
|
tab_names=['Image inference', 'Video inference'], |
|
).queue().launch() |
|
|