Added some files
Browse files- .gitignore +8 -0
- app.py +175 -0
- best.pt +3 -0
- requirements.txt +45 -0
.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flagged/
|
2 |
+
*.pt
|
3 |
+
*.png
|
4 |
+
*.jpg
|
5 |
+
*.JPG
|
6 |
+
*.mp4
|
7 |
+
*.mkv
|
8 |
+
gradio_cached_examples/
|
app.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import requests
|
4 |
+
import os
|
5 |
+
import random
|
6 |
+
|
7 |
+
from ultralytics import YOLO
|
8 |
+
|
9 |
+
file_urls = [
|
10 |
+
'https://www.dropbox.com/scl/fi/34yt1vrl4mc4n9ujdf9gm/all_76.jpg?rlkey=f7b6nq478r2m9yahcalzjzif5&dl=1',
|
11 |
+
'https://www.dropbox.com/scl/fi/lns6cewinp7rgf3v2g1n8/all_5.jpg?rlkey=20zvut81b829k9lg5yk8ve99z&dl=1',
|
12 |
+
'https://www.dropbox.com/scl/fi/13jr2f1znuzulmsyabl2f/long3.jpg?rlkey=jeyriw5a8c0t42e7y2986y53m&dl=1',
|
13 |
+
'https://www.dropbox.com/scl/fi/nglwcza7msjo1vu4kw27r/pot4.jpg?rlkey=1ynm35b4j100ta0p5g3fx7hx4&dl=1',
|
14 |
+
'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1'
|
15 |
+
]
|
16 |
+
|
17 |
+
# def download_file(url, save_name):
|
18 |
+
# url = url
|
19 |
+
# if not os.path.exists(save_name):
|
20 |
+
# file = requests.get(url)
|
21 |
+
# open(save_name, 'wb').write(file.content)
|
22 |
+
|
23 |
+
# for i, url in enumerate(file_urls):
|
24 |
+
# if 'mp4' in file_urls[i]:
|
25 |
+
# download_file(
|
26 |
+
# file_urls[i],
|
27 |
+
# f"video.mp4"
|
28 |
+
# )
|
29 |
+
# else:
|
30 |
+
# download_file(
|
31 |
+
# file_urls[i],
|
32 |
+
# f"image_{i}.jpg"
|
33 |
+
# )
|
34 |
+
|
35 |
+
|
36 |
+
model = YOLO('best.pt')
|
37 |
+
# path = [['image_0.jpg'], ['image_1.jpg'], ['image_2.jpg'], ['image_3.jpg']]
|
38 |
+
|
39 |
+
path = [['IMG_7612.JPG'], ['IMG_7678.JPG'], ['all_33.jpg'], ['all_80.jpg'],
|
40 |
+
['DSC02813.JPG'], ['DSC02373.JPG']]
|
41 |
+
|
42 |
+
|
43 |
+
# path = [['sc_1_0 (1) (1).JPG'], ['sc_1_0 (16) (1).JPG'],
|
44 |
+
# ['sc_1_0 (18) (1).JPG'], ['sc_1_0 (18).JPG']]
|
45 |
+
|
46 |
+
video_path = [['VID-20230809-WA0021.mp4'], ['VID-20230809-WA0022.mp4'],
|
47 |
+
['VID-20230809-WA0024.mp4'], ['VID-20230809-WA0032.mp4']]
|
48 |
+
|
49 |
+
classes = ['alligator_cracking', 'longitudinal_cracking', 'potholes', 'ravelling']
|
50 |
+
|
51 |
+
def show_preds_image(image_path):
|
52 |
+
image = cv2.imread(image_path)
|
53 |
+
outputs = model.predict(source=image_path, agnostic_nms=True, conf=0.25, iou=0.4, imgsz=1024)
|
54 |
+
results = outputs[0].cpu().numpy()
|
55 |
+
|
56 |
+
re_boxes = results.boxes.data.tolist()
|
57 |
+
|
58 |
+
class_colors = {1 : (95, 255, 54), 2: (242, 210, 100), 3: (96, 7, 70), 4:(221, 59, 41)}
|
59 |
+
random.seed(42)
|
60 |
+
# class_colors = [(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for _ in range(4)]
|
61 |
+
|
62 |
+
for i, det in enumerate(results.boxes.xyxy):
|
63 |
+
x1, y1, x2, y2 = int(det[0]), int(det[1]), int(det[2]), int(det[3])
|
64 |
+
|
65 |
+
class_label = int(re_boxes[i][-1])
|
66 |
+
rectangle_color = class_colors.get(class_label)
|
67 |
+
# rectangle_color = class_colors[class_label]
|
68 |
+
text_color = rectangle_color
|
69 |
+
cv2.rectangle(
|
70 |
+
image,
|
71 |
+
(int(det[0]), int(det[1])),
|
72 |
+
(int(det[2]), int(det[3])),
|
73 |
+
color=rectangle_color,
|
74 |
+
thickness=3,
|
75 |
+
lineType=cv2.LINE_AA
|
76 |
+
)
|
77 |
+
|
78 |
+
text_position = (x1, y1+100)
|
79 |
+
conf = re_boxes[i][-2]
|
80 |
+
class_name = classes[class_label]
|
81 |
+
# class_label = class_name.split('_')[0] + '\n' + class_name.split('_')[1] if '_' in class_name else class_name
|
82 |
+
cv2.putText(image, classes[class_label] + f' = {round(conf, 2)}',
|
83 |
+
text_position, cv2.FONT_HERSHEY_SIMPLEX, 1.5, text_color, 3)
|
84 |
+
|
85 |
+
|
86 |
+
# print(class_ids)
|
87 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
88 |
+
|
89 |
+
inputs_image = [
|
90 |
+
gr.components.Image(type="filepath", label="Input Image"),
|
91 |
+
]
|
92 |
+
outputs_image = [
|
93 |
+
gr.components.Image(type="numpy", label="Output Image"),
|
94 |
+
]
|
95 |
+
interface_image = gr.Interface(
|
96 |
+
fn=show_preds_image,
|
97 |
+
inputs=inputs_image,
|
98 |
+
outputs=outputs_image,
|
99 |
+
title="Asphalt Road Pavement Distresses Detector",
|
100 |
+
examples=path,
|
101 |
+
cache_examples=False,
|
102 |
+
description= 'This is a demo app that takes in images or videos of Asphalt pavement surfaces and \
|
103 |
+
\n detects the following pavement distresses: \
|
104 |
+
\n \
|
105 |
+
\n Alligator cracking \
|
106 |
+
\n Longitudinal cracking \
|
107 |
+
\n Potholes \
|
108 |
+
\n Ravelling \
|
109 |
+
\n \
|
110 |
+
\n This is specifically for Inference and educational purpose.\
|
111 |
+
\n \
|
112 |
+
\n The model might ocassionaly give false outputs'
|
113 |
+
)
|
114 |
+
|
115 |
+
def show_preds_video(video_path):
|
116 |
+
cap = cv2.VideoCapture(video_path)
|
117 |
+
while(cap.isOpened()):
|
118 |
+
ret, frame = cap.read()
|
119 |
+
if ret:
|
120 |
+
frame_copy = frame.copy()
|
121 |
+
outputs = model.predict(source=frame, agnostic_nms=True, conf=0.25, iou=0.4, imgsz=1024)
|
122 |
+
results = outputs[0].cpu().numpy()
|
123 |
+
re_boxes = results.boxes.data.tolist()
|
124 |
+
|
125 |
+
class_colors = {1 : (95, 255, 54), 2: (242, 210, 100), 3: (96, 7, 70), 4:(221, 59, 41)}
|
126 |
+
random.seed(42)
|
127 |
+
# class_colors = [(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for _ in range(4)]
|
128 |
+
|
129 |
+
for i, det in enumerate(results.boxes.xyxy):
|
130 |
+
x1, y1, x2, y2 = int(det[0]), int(det[1]), int(det[2]), int(det[3])
|
131 |
+
|
132 |
+
class_label = int(re_boxes[i][-1])
|
133 |
+
rectangle_color = class_colors.get(class_label)
|
134 |
+
# rectangle_color = class_colors[class_label]
|
135 |
+
text_color = rectangle_color
|
136 |
+
|
137 |
+
cv2.rectangle(
|
138 |
+
frame_copy,
|
139 |
+
(int(det[0]), int(det[1])),
|
140 |
+
(int(det[2]), int(det[3])),
|
141 |
+
color=rectangle_color,
|
142 |
+
thickness=2,
|
143 |
+
lineType=cv2.LINE_AA
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
text_position = (x1, y1+100)
|
148 |
+
conf = re_boxes[i][-2]
|
149 |
+
class_name = classes[class_label]
|
150 |
+
# class_label = class_name.split('_')[0] + '\n' + class_name.split('_')[1] if '_' in class_name else class_name
|
151 |
+
cv2.putText(frame_copy, classes[class_label] + f' = {round(conf, 2)}',
|
152 |
+
text_position, cv2.FONT_HERSHEY_SIMPLEX, 1.5, text_color, 3)
|
153 |
+
|
154 |
+
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
155 |
+
|
156 |
+
inputs_video = [
|
157 |
+
gr.components.Video(type="filepath", label="Input Video"),
|
158 |
+
|
159 |
+
]
|
160 |
+
outputs_video = [
|
161 |
+
gr.components.Image(type="numpy", label="Output Video"),
|
162 |
+
]
|
163 |
+
interface_video = gr.Interface(
|
164 |
+
fn=show_preds_video,
|
165 |
+
inputs=inputs_video,
|
166 |
+
outputs=outputs_video,
|
167 |
+
title="Asphalt Road Pavement Distresses Detector",
|
168 |
+
examples=video_path,
|
169 |
+
cache_examples=False,
|
170 |
+
# live=True
|
171 |
+
)
|
172 |
+
gr.TabbedInterface(
|
173 |
+
[interface_image, interface_video],
|
174 |
+
tab_names=['Image inference', 'Video inference'],
|
175 |
+
).queue().launch()
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9e59dae4ba88de0caa60558da6873bc12460e12757e356e25200035c1071dc4
|
3 |
+
size 22527918
|
requirements.txt
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ultralytics requirements
|
2 |
+
# Usage: pip install -r requirements.txt
|
3 |
+
|
4 |
+
# Base ----------------------------------------
|
5 |
+
matplotlib>=3.2.2
|
6 |
+
numpy>=1.22.2 # pinned by Snyk to avoid a vulnerability
|
7 |
+
opencv-python>=4.6.0
|
8 |
+
pillow>=7.1.2
|
9 |
+
pyyaml>=5.3.1
|
10 |
+
requests>=2.23.0
|
11 |
+
scipy>=1.4.1
|
12 |
+
torch>=1.7.0
|
13 |
+
torchvision>=0.8.1
|
14 |
+
tqdm>=4.64.0
|
15 |
+
|
16 |
+
# Logging -------------------------------------
|
17 |
+
# tensorboard>=2.13.0
|
18 |
+
# dvclive>=2.12.0
|
19 |
+
# clearml
|
20 |
+
# comet
|
21 |
+
|
22 |
+
# Plotting ------------------------------------
|
23 |
+
pandas>=1.1.4
|
24 |
+
seaborn>=0.11.0
|
25 |
+
|
26 |
+
# Export --------------------------------------
|
27 |
+
# coremltools>=7.0.b1 # CoreML export
|
28 |
+
# onnx>=1.12.0 # ONNX export
|
29 |
+
# onnxsim>=0.4.1 # ONNX simplifier
|
30 |
+
# nvidia-pyindex # TensorRT export
|
31 |
+
# nvidia-tensorrt # TensorRT export
|
32 |
+
# scikit-learn==0.19.2 # CoreML quantization
|
33 |
+
# tensorflow>=2.4.1 # TF exports (-cpu, -aarch64, -macos)
|
34 |
+
# tflite-support
|
35 |
+
# tensorflowjs>=3.9.0 # TF.js export
|
36 |
+
# openvino-dev>=2023.0 # OpenVINO export
|
37 |
+
|
38 |
+
# Extras --------------------------------------
|
39 |
+
psutil # system utilization
|
40 |
+
py-cpuinfo # display CPU info
|
41 |
+
# thop>=0.1.1 # FLOPs computation
|
42 |
+
# ipython # interactive notebook
|
43 |
+
# albumentations>=1.0.3 # training augmentations
|
44 |
+
# pycocotools>=2.0.6 # COCO mAP
|
45 |
+
# roboflow
|