import gradio as gr import cv2 import requests import os import random from ultralytics import YOLO file_urls = [ 'https://www.dropbox.com/scl/fi/5pavu4vvkprrtkwktvei7/DSC02373.JPG?rlkey=fpj636qtkf3vrqfxy45n2d9ii&dl=1', 'https://www.dropbox.com/scl/fi/56pbn4r3ohk85rchcvwdj/DSC02813.JPG?rlkey=jnbsidqtthk6p4ysld6o6kc4t&dl=1', 'https://www.dropbox.com/scl/fi/av9g5zbmrrzg9064zivat/image_2.jpg?rlkey=ldocvzz5lq98zffqf1lmhbhv1&dl=1', 'https://www.dropbox.com/scl/fi/izo2eqqnqzcsaxis1qrbx/IMG_7612.JPG?rlkey=6wfjaux44khtlx454ex0ng0hp&dl=1', 'https://www.dropbox.com/scl/fi/e6vgy1et6vjr61uypk5yu/VID-20230809-WA0021.mp4?rlkey=khv8rw074vezzlg8ob38bpmbx&dl=1' ] def download_file(url, save_name): url = url if not os.path.exists(save_name): file = requests.get(url) open(save_name, 'wb').write(file.content) for i, url in enumerate(file_urls): if 'mp4' in file_urls[i]: download_file( file_urls[i], f"video.mp4" ) else: download_file( file_urls[i], f"image_{i}.jpg" ) model = YOLO('best.pt', task='detect') path = [['image_0.jpg'], ['image_1.jpg'], ['image_2.jpg'], ['image_3.jpg']] # path = [['IMG_7612.JPG'], ['IMG_7678.JPG'], ['all_33.jpg'], ['all_80.jpg'], # ['DSC02813.JPG'], ['DSC02373.JPG']] # path = [['sc_1_0 (1) (1).JPG'], ['sc_1_0 (16) (1).JPG'], # ['sc_1_0 (18) (1).JPG'], ['sc_1_0 (18).JPG']] video_path = [['video.mp4']] classes = ['alligator_cracking', 'longitudinal_cracking', 'potholes', 'ravelling'] def show_preds_image(image_path): image = cv2.imread(image_path) outputs = model.predict(source=image_path, agnostic_nms=True, conf=0.25, iou=0.4, imgsz=640) results = outputs[0].cpu().numpy() re_boxes = results.boxes.data.tolist() class_colors = {1 : (95, 255, 54), 2: (242, 210, 100), 3: (96, 7, 70), 4:(221, 59, 41)} random.seed(42) # class_colors = [(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for _ in range(4)] for i, det in enumerate(results.boxes.xyxy): x1, y1, x2, y2 = int(det[0]), int(det[1]), int(det[2]), int(det[3]) class_label = int(re_boxes[i][-1]) rectangle_color = class_colors.get(class_label) # rectangle_color = class_colors[class_label] text_color = rectangle_color cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=rectangle_color, thickness=3, lineType=cv2.LINE_AA ) text_position = (x1, y1+100) conf = re_boxes[i][-2] class_name = classes[class_label] # class_label = class_name.split('_')[0] + '\n' + class_name.split('_')[1] if '_' in class_name else class_name cv2.putText(image, classes[class_label] + f' = {round(conf, 2)}', text_position, cv2.FONT_HERSHEY_SIMPLEX, 1.5, text_color, 3) # print(class_ids) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) inputs_image = [ gr.components.Image(type="filepath", label="Input Image"), ] outputs_image = [ gr.components.Image(type="numpy", label="Output Image"), ] interface_image = gr.Interface( fn=show_preds_image, inputs=inputs_image, outputs=outputs_image, title="Asphalt Road Pavement Distresses Detector", examples=path, cache_examples=False, description= 'This is a demo app that takes in images or videos of Asphalt pavement surfaces and \ \n detects the following pavement distresses: \ \n \ \n Alligator cracking \ \n Longitudinal cracking \ \n Potholes \ \n Ravelling \ \n \ \n This is specifically for Inference and educational purpose.\ \n \ \n The model might ocassionaly give false outputs' ) def show_preds_video(video_path): cap = cv2.VideoCapture(video_path) while(cap.isOpened()): ret, frame = cap.read() if ret: frame_copy = frame.copy() outputs = model.predict(source=frame, agnostic_nms=True, conf=0.25, iou=0.4, imgsz=640) results = outputs[0].cpu().numpy() re_boxes = results.boxes.data.tolist() class_colors = {1 : (95, 255, 54), 2: (242, 210, 100), 3: (96, 7, 70), 4:(221, 59, 41)} random.seed(42) # class_colors = [(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for _ in range(4)] for i, det in enumerate(results.boxes.xyxy): x1, y1, x2, y2 = int(det[0]), int(det[1]), int(det[2]), int(det[3]) class_label = int(re_boxes[i][-1]) rectangle_color = class_colors.get(class_label) # rectangle_color = class_colors[class_label] text_color = rectangle_color cv2.rectangle( frame_copy, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=rectangle_color, thickness=2, lineType=cv2.LINE_AA ) text_position = (x1, y1+100) conf = re_boxes[i][-2] class_name = classes[class_label] # class_label = class_name.split('_')[0] + '\n' + class_name.split('_')[1] if '_' in class_name else class_name cv2.putText(frame_copy, classes[class_label] + f' = {round(conf, 2)}', text_position, cv2.FONT_HERSHEY_SIMPLEX, 1.5, text_color, 3) yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) inputs_video = [ gr.components.Video(type="filepath", label="Input Video"), ] outputs_video = [ gr.components.Image(type="numpy", label="Output Video"), ] interface_video = gr.Interface( fn=show_preds_video, inputs=inputs_video, outputs=outputs_video, title="Asphalt Road Pavement Distresses Detector", examples=video_path, cache_examples=False, # live=True ) gr.TabbedInterface( [interface_image, interface_video], tab_names=['Image inference', 'Video inference'], ).queue().launch()