File size: 27,393 Bytes
cbf69e8
733fac9
 
 
 
 
cbf69e8
4a2c956
733fac9
 
 
 
7c790c0
733fac9
7c790c0
61b9ff7
 
 
733fac9
caceb4b
733fac9
 
ea44723
43d3d85
cbf69e8
733fac9
 
 
 
 
cbf69e8
733fac9
 
caceb4b
cbf69e8
ea44723
 
cbf69e8
43d3d85
 
cbf69e8
 
 
43d3d85
 
cbf69e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c790c0
733fac9
 
 
 
cbf69e8
733fac9
cbf69e8
733fac9
cbf69e8
 
 
 
e63ee0a
 
2d1a42e
733fac9
e63ee0a
733fac9
 
 
7c790c0
 
 
 
e63ee0a
 
733fac9
7c790c0
 
 
 
 
 
cbf69e8
733fac9
 
 
 
cbf69e8
733fac9
 
 
 
cbf69e8
733fac9
cbf69e8
733fac9
 
 
 
 
 
 
 
 
 
cbf69e8
733fac9
 
 
 
 
 
 
 
 
 
 
 
 
 
cbf69e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733fac9
cbf69e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733fac9
cbf69e8
 
 
 
 
 
 
 
 
 
733fac9
 
 
cbf69e8
 
 
733fac9
cbf69e8
 
 
 
 
 
733fac9
 
 
 
cbf69e8
733fac9
cbf69e8
 
cade2a3
 
 
cbf69e8
cade2a3
 
 
 
cbf69e8
 
 
 
 
 
 
 
cade2a3
cbf69e8
cade2a3
cbf69e8
 
 
cade2a3
 
 
 
 
 
 
733fac9
cade2a3
 
 
 
 
 
cbf69e8
 
 
 
 
 
 
 
 
 
 
 
 
 
cade2a3
cbf69e8
ea44723
 
 
 
 
 
 
733fac9
 
cbf69e8
ea44723
 
 
 
 
 
cbf69e8
733fac9
cbf69e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733fac9
 
 
cbf69e8
733fac9
cbf69e8
6cdf548
 
e63ee0a
 
733fac9
 
a00d592
8ecee14
cbf69e8
 
e63ee0a
 
 
 
733fac9
5baab88
733fac9
e63ee0a
2d1a42e
cbf69e8
 
 
733fac9
 
cbf69e8
ea44723
cbf69e8
 
 
 
733fac9
 
 
cbf69e8
 
 
 
 
 
 
6cdf548
cbf69e8
 
 
 
ea44723
cbf69e8
 
 
 
733fac9
cbf69e8
 
 
 
 
 
733fac9
cbf69e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c790c0
733fac9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import os, copy
os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
# make sure cuda dir is in the same level as modeling_rwkv.py
from modeling_rwkv import RWKV

import gc, re
import gradio as gr
import base64
from io import BytesIO
import torch
import torch.nn.functional as F
from datetime import datetime
from transformers import CLIPImageProcessor
from huggingface_hub import hf_hub_download
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

ctx_limit = 2500
gen_limit = 500
gen_limit_long = 800
ENABLE_VISUAL = False

########################## text rwkv ################################################################
from rwkv.utils import PIPELINE, PIPELINE_ARGS

title_v6 = "RWKV-x060-World-3B-v2.1-20240417-ctx4096"
model_path_v6 = hf_hub_download(repo_id="BlinkDL/rwkv-6-world", filename=f"{title_v6}.pth")
# model_path_v6 = '/mnt/e/RWKV-Runner/models/rwkv-final-v6-2.1-3b' # conda activate torch2; cd /mnt/program/_RWKV_/_ref_/_gradio_/RWKV-Gradio-1; python app.py
model_v6 = RWKV(model=model_path_v6, strategy='cuda fp16')
pipeline_v6 = PIPELINE(model_v6, "rwkv_vocab_v20230424")

args = model_v6.args
eng_name = 'rwkv-x060-eng_single_round_qa-3B-20240516-ctx2048'
chn_name = 'rwkv-x060-chn_single_round_qa-3B-20240516-ctx2048'

# state_eng_raw = torch.load(f'/mnt/e/RWKV-Runner/models/{eng_name}.pth', map_location=torch.device('cpu'))
# state_chn_raw = torch.load(f'/mnt/e/RWKV-Runner/models/{chn_name}.pth', map_location=torch.device('cpu'))

eng_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{eng_name}.pth")
chn_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{chn_name}.pth")
state_eng_raw = torch.load(eng_file, map_location=torch.device('cpu'))
state_chn_raw = torch.load(chn_file, map_location=torch.device('cpu'))

state_eng = [None] * args.n_layer * 3
state_chn = [None] * args.n_layer * 3
for i in range(args.n_layer):
    dd = model_v6.strategy[i]
    dev = dd.device
    atype = dd.atype    
    state_eng[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
    state_chn[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
    state_eng[i*3+1] = state_eng_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
    state_chn[i*3+1] = state_chn_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
    state_eng[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
    state_chn[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()

penalty_decay = 0.996

if ENABLE_VISUAL:
    title = "RWKV-5-World-1B5-v2-20231025-ctx4096"
    model_path = hf_hub_download(repo_id="BlinkDL/rwkv-5-world", filename=f"{title}.pth")
    model = RWKV(model=model_path, strategy='cuda fp16')
    pipeline = PIPELINE(model, "rwkv_vocab_v20230424")

def generate_prompt(instruction, input=""):
    instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
    input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
    if input:
        return f"""Instruction: {instruction}\n\nInput: {input}\n\nResponse:"""
    else:
        return f"""User: hi\n\nAssistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\nUser: {instruction}\n\nAssistant:"""

def qa_prompt(instruction):
    instruction = instruction.strip().replace('\r\n','\n')
    instruction = re.sub(r'\n+', '\n', instruction)
    return f"User: {instruction}\n\nAssistant:"""

def evaluate(
    ctx,
    token_count=200,
    temperature=1.0,
    top_p=0.7,
    presencePenalty = 0.1,
    countPenalty = 0.1,
):
    args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
                     alpha_frequency = countPenalty,
                     alpha_presence = presencePenalty,
                     token_ban = [], # ban the generation of some tokens
                     token_stop = [0]) # stop generation whenever you see any token here
    ctx = ctx.strip()
    all_tokens = []
    out_last = 0
    out_str = ''
    occurrence = {}
    state = None
    for i in range(int(token_count)):
        input_ids = pipeline_v6.encode(ctx)[-ctx_limit:] if i == 0 else [token]
        out, state = model_v6.forward(tokens=input_ids, state=state)
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline_v6.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        if token in args.token_stop:
            break
        all_tokens += [token]
        for xxx in occurrence:
            occurrence[xxx] *= penalty_decay
            
        ttt = pipeline_v6.decode([token])
        www = 1
        if ttt in ' \t0123456789':
            www = 0
        #elif ttt in '\r\n,.;?!"\':+-*/=#@$%^&_`~|<>\\()[]{},。;“”:?!()【】':
        #    www = 0.5
        if token not in occurrence:
            occurrence[token] = www
        else:
            occurrence[token] += www
            
        tmp = pipeline_v6.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            out_str += tmp
            yield out_str.strip()
            out_last = i + 1

    gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
    del out
    del state
    gc.collect()
    torch.cuda.empty_cache()
    yield out_str.strip()

def evaluate_eng(
    ctx,
    token_count=200,
    temperature=1.0,
    top_p=0.7,
    presencePenalty = 0.1,
    countPenalty = 0.1,
):
    args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
                     alpha_frequency = countPenalty,
                     alpha_presence = presencePenalty,
                     token_ban = [], # ban the generation of some tokens
                     token_stop = [0]) # stop generation whenever you see any token here
    ctx = qa_prompt(ctx)
    all_tokens = []
    out_last = 0
    out_str = ''
    occurrence = {}
    state = copy.deepcopy(state_eng)
    for i in range(int(token_count)):
        input_ids = pipeline_v6.encode(ctx)[-ctx_limit:] if i == 0 else [token]
        out, state = model_v6.forward(tokens=input_ids, state=state)
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline_v6.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        if token in args.token_stop:
            break
        all_tokens += [token]
        for xxx in occurrence:
            occurrence[xxx] *= penalty_decay
            
        ttt = pipeline_v6.decode([token])
        www = 1
        if ttt in ' \t0123456789':
            www = 0
        #elif ttt in '\r\n,.;?!"\':+-*/=#@$%^&_`~|<>\\()[]{},。;“”:?!()【】':
        #    www = 0.5
        if token not in occurrence:
            occurrence[token] = www
        else:
            occurrence[token] += www
            
        tmp = pipeline_v6.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            out_str += tmp
            yield out_str.strip()
            out_last = i + 1

    gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
    del out
    del state
    gc.collect()
    torch.cuda.empty_cache()
    yield out_str.strip()

def evaluate_chn(
    ctx,
    token_count=200,
    temperature=1.0,
    top_p=0.7,
    presencePenalty = 0.1,
    countPenalty = 0.1,
):
    args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
                     alpha_frequency = countPenalty,
                     alpha_presence = presencePenalty,
                     token_ban = [], # ban the generation of some tokens
                     token_stop = [0]) # stop generation whenever you see any token here
    ctx = qa_prompt(ctx)
    all_tokens = []
    out_last = 0
    out_str = ''
    occurrence = {}
    state = copy.deepcopy(state_chn)
    for i in range(int(token_count)):
        input_ids = pipeline_v6.encode(ctx)[-ctx_limit:] if i == 0 else [token]
        out, state = model_v6.forward(tokens=input_ids, state=state)
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline_v6.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        if token in args.token_stop:
            break
        all_tokens += [token]
        for xxx in occurrence:
            occurrence[xxx] *= penalty_decay
            
        ttt = pipeline_v6.decode([token])
        www = 1
        if ttt in ' \t0123456789':
            www = 0
        #elif ttt in '\r\n,.;?!"\':+-*/=#@$%^&_`~|<>\\()[]{},。;“”:?!()【】':
        #    www = 0.5
        if token not in occurrence:
            occurrence[token] = www
        else:
            occurrence[token] += www
            
        tmp = pipeline_v6.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            out_str += tmp
            yield out_str.strip()
            out_last = i + 1

    gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
    del out
    del state
    gc.collect()
    torch.cuda.empty_cache()
    yield out_str.strip()

examples = [
    ["Assistant: How can we craft an engaging story featuring vampires on Mars? Let's think step by step and provide an expert response.", gen_limit, 1, 0.3, 0.5, 0.5],
    ["Assistant: How can we persuade Elon Musk to follow you on Twitter? Let's think step by step and provide an expert response.", gen_limit, 1, 0.3, 0.5, 0.5],
    [generate_prompt("東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。"), gen_limit, 1, 0.3, 0.5, 0.5],
    [generate_prompt("Write a story using the following information.", "A man named Alex chops a tree down."), gen_limit, 1, 0.3, 0.5, 0.5],
    ["A few light taps upon the pane made her turn to the window. It had begun to snow again.", gen_limit, 1, 0.3, 0.5, 0.5],
    ['''Edward: I am Edward Elric from Fullmetal Alchemist.\n\nUser: Hello Edward. What have you been up to recently?\n\nEdward:''', gen_limit, 1, 0.3, 0.5, 0.5],
    [generate_prompt("Write a simple website in HTML. When a user clicks the button, it shows a random joke from a list of 4 jokes."), 500, 1, 0.3, 0.5, 0.5],
    ['''Japanese: 春の初め、桜の花が満開になる頃、小さな町の片隅にある古びた神社の境内は、特別な雰囲気に包まれていた。\n\nEnglish:''', gen_limit, 1, 0.3, 0.5, 0.5],
    ["En una pequeña aldea escondida entre las montañas de Andalucía, donde las calles aún conservaban el eco de antiguas leyendas, vivía un joven llamado Alejandro.", gen_limit, 1, 0.3, 0.5, 0.5],
    ["Dans le cœur battant de Paris, sous le ciel teinté d'un crépuscule d'or et de pourpre, se tenait une petite librairie oubliée par le temps.", gen_limit, 1, 0.3, 0.5, 0.5],
    ["في تطور مذهل وغير مسبوق، أعلنت السلطات المحلية في العاصمة عن اكتشاف أثري قد يغير مجرى التاريخ كما نعرفه.", gen_limit, 1, 0.3, 0.5, 0.5],
    ['''“当然可以,大宇宙不会因为这五公斤就不坍缩了。”关一帆说,他还有一个没说出来的想法:也许大宇宙真的会因为相差一个原子的质量而由封闭转为开放。大自然的精巧有时超出想象,比如生命的诞生,就需要各项宇宙参数在几亿亿分之一精度上的精确配合。但程心仍然可以留下她的生态球,因为在那无数文明创造的无数小宇宙中,肯定有相当一部分不响应回归运动的号召,所以,大宇宙最终被夺走的质量至少有几亿吨,甚至可能是几亿亿亿吨。\n但愿大宇宙能够忽略这个误差。\n程心和关一帆进入了飞船,智子最后也进来了。她早就不再穿那身华丽的和服了,她现在身着迷彩服,再次成为一名轻捷精悍的战士,她的身上佩带着许多武器和生存装备,最引人注目的是那把插在背后的武士刀。\n“放心,我在,你们就在!”智子对两位人类朋友说。\n聚变发动机启动了,推进器发出幽幽的蓝光,''', gen_limit, 1, 0.3, 0.5, 0.5],
]

examples_eng = [
    ["How can I craft an engaging story featuring vampires on Mars?", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["Compare the business models of Apple and Google.", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["In JSON format, list the top 5 tourist attractions in Paris.", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["Write an outline for a fantasy novel where dreams can alter reality.", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["Can fish get thirsty?", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["Write a Bash script to check disk usage and send alerts if it's too high.", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["Write a simple website in HTML. When a user clicks the button, it shows a random joke from a list of 4 jokes.", gen_limit_long, 1, 0.2, 0.3, 0.3],
]

examples_chn = [
    ["怎样写一个在火星上的吸血鬼的有趣故事?", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["比较苹果和谷歌的商业模式。", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["鱼会口渴吗?", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["以 JSON 格式列举北京的美食。", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["编写一个Bash脚本来检查磁盘使用情况,如果使用量过高则发送警报。", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["用HTML编写一个简单的网站。当用户点击按钮时,从4个笑话的列表中随机显示一个笑话。", gen_limit_long, 1, 0.2, 0.3, 0.3],
]

if ENABLE_VISUAL:
    ########################## visual rwkv ################################################################
    visual_title = 'ViusualRWKV-v5'
    rwkv_remote_path = "rwkv1b5-vitl336p14-577token_mix665k_rwkv.pth"
    vision_remote_path = "rwkv1b5-vitl336p14-577token_mix665k_visual.pth"
    vision_tower_name = 'openai/clip-vit-large-patch14-336'

    model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=rwkv_remote_path)
    visual_rwkv = RWKV(model=model_path, strategy='cuda fp16')

    ##########################################################################
    from modeling_vision import VisionEncoder, VisionEncoderConfig
    config = VisionEncoderConfig(n_embd=model.args.n_embd, 
                                vision_tower_name=vision_tower_name, 
                                grid_size=-1)
    visual_encoder = VisionEncoder(config)
    vision_local_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=vision_remote_path)
    vision_state_dict = torch.load(vision_local_path, map_location='cpu')
    visual_encoder.load_state_dict(vision_state_dict)
    image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name)
    visual_encoder = visual_encoder.to(device)
    ##########################################################################
    def visual_generate_prompt(instruction):
        instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
        return f"\n{instruction}\n\nAssistant:"

    def generate(
        ctx,
        image_state,
        token_count=200,
        temperature=1.0,
        top_p=0.1,
        presencePenalty = 0.0,
        countPenalty = 1.0,
    ):
        args = PIPELINE_ARGS(temperature = 1.0, top_p = 0.1,
                        alpha_frequency = 1.0,
                        alpha_presence = 0.0,
                        token_ban = [], # ban the generation of some tokens
                        token_stop = [0, 261]) # stop generation whenever you see any token here
        ctx = ctx.strip()
        all_tokens = []
        out_last = 0
        out_str = ''
        occurrence = {}
        for i in range(int(token_count)):
            if i == 0:
                input_ids = pipeline.encode(ctx)[-ctx_limit:]
                out, state = visual_rwkv.forward(tokens=input_ids, state=image_state)
            else:
                input_ids = [token]
                out, state = visual_rwkv.forward(tokens=input_ids, state=state)
            for n in occurrence:
                out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

            token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
            if token in args.token_stop:
                break
            all_tokens += [token]
            for xxx in occurrence:
                occurrence[xxx] *= 0.994        
            if token not in occurrence:
                occurrence[token] = 1
            else:
                occurrence[token] += 1
            
            tmp = pipeline.decode(all_tokens[out_last:])
            if '\ufffd' not in tmp:
                out_str += tmp
                yield out_str.strip()
                out_last = i + 1

        gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
        del out
        del state
        gc.collect()
        torch.cuda.empty_cache()
        yield out_str.strip()


    ##########################################################################
    cur_dir = os.path.dirname(os.path.abspath(__file__))
    visual_examples = [
        [
            f"{cur_dir}/examples_pizza.jpg",
            "What are steps to cook it?"
        ],
        [
            f"{cur_dir}/examples_bluejay.jpg",
            "what is the name of this bird?",
        ],
        [
            f"{cur_dir}/examples_woman_and_dog.png",
            "describe this image",
        ],
    ]


    def pil_image_to_base64(pil_image):
        buffered = BytesIO()
        pil_image.save(buffered, format="JPEG")  # You can change the format as needed (JPEG, PNG, etc.)
        # Encodes the image data into base64 format as a bytes object
        base64_image = base64.b64encode(buffered.getvalue()).decode('utf-8')
        return base64_image

    image_cache = {}
    ln0_weight = model.w['blocks.0.ln0.weight'].to(torch.float32).to(device)
    ln0_bias = model.w['blocks.0.ln0.bias'].to(torch.float32).to(device)
    def compute_image_state(image):
        base64_image = pil_image_to_base64(image)
        if base64_image in image_cache:
            image_state = image_cache[base64_image]
        else:
            image = image_processor(images=image.convert('RGB'), return_tensors='pt')['pixel_values'].to(device)
            image_features = visual_encoder.encode_images(image.unsqueeze(0)).squeeze(0) # [L, D]
            # apply layer norm to image feature, very important
            image_features = F.layer_norm(image_features, 
                                        (image_features.shape[-1],), 
                                        weight=ln0_weight, 
                                        bias=ln0_bias)
            _, image_state = model.forward(embs=image_features, state=None)
            image_cache[base64_image] = image_state
        return image_state

    def chatbot(image, question):
        if image is None:
            yield "Please upload an image."
            return
        image_state = compute_image_state(image)
        input_text = visual_generate_prompt(question)
        for output in generate(input_text, image_state):
            yield output


##################################################################################################################
with gr.Blocks(title=title_v6) as demo:
    gr.HTML(f"<div style=\"text-align: center;\">\n<h1>{title_v6}</h1>\n</div>")

    with gr.Tab("=== Base Model (Raw Generation) ==="):
        gr.Markdown(f"This is [RWKV-6 World v2](https://huggingface.co/BlinkDL/rwkv-6-world) - a 100% attention-free RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM). Supports 100+ world languages and code. Check [300+ Github RWKV projects](https://github.com/search?o=desc&p=1&q=rwkv&s=updated&type=Repositories). *** Can try examples (bottom of page) *** (can edit them). Demo limited to ctxlen {ctx_limit}.")
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(lines=2, label="Prompt", value="Assistant: How can we craft an engaging story featuring vampires on Mars? Let's think step by step and provide an expert response.")
                token_count = gr.Slider(10, gen_limit, label="Max Tokens", step=10, value=gen_limit)
                temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
                top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
                presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.5)
                count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.5)
            with gr.Column():
                with gr.Row():
                    submit = gr.Button("Submit", variant="primary")
                    clear = gr.Button("Clear", variant="secondary")
                output = gr.Textbox(label="Output", lines=30)
        data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, samples_per_page=50, label="Example Instructions", headers=["Prompt", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
        submit.click(evaluate, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
        clear.click(lambda: None, [], [output])
        data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])

    with gr.Tab("=== English Q/A ==="):
        gr.Markdown(f"This is [RWKV-6](https://huggingface.co/BlinkDL/rwkv-6-world) state-tuned to [English Q/A](https://huggingface.co/BlinkDL/temp-latest-training-models/blob/main/{eng_name}.pth). RWKV is a 100% attention-free RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM), and we have [300+ Github RWKV projects](https://github.com/search?o=desc&p=1&q=rwkv&s=updated&type=Repositories). Demo limited to ctxlen {ctx_limit}.")
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(lines=2, label="Prompt", value="How can I craft an engaging story featuring vampires on Mars?")
                token_count = gr.Slider(10, gen_limit_long, label="Max Tokens", step=10, value=gen_limit_long)
                temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
                top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.2)
                presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.3)
                count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.3)
            with gr.Column():
                with gr.Row():
                    submit = gr.Button("Submit", variant="primary")
                    clear = gr.Button("Clear", variant="secondary")
                output = gr.Textbox(label="Output", lines=30)
        data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples_eng, samples_per_page=50, label="Examples", headers=["Prompt", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
        submit.click(evaluate_eng, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
        clear.click(lambda: None, [], [output])
        data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])

    with gr.Tab("=== Chinese Q/A ==="):
        gr.Markdown(f"This is [RWKV-6](https://huggingface.co/BlinkDL/rwkv-6-world) state-tuned to [Chinese Q/A](https://huggingface.co/BlinkDL/temp-latest-training-models/blob/main/{chn_name}.pth). RWKV is a 100% attention-free RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM), and we have [300+ Github RWKV projects](https://github.com/search?o=desc&p=1&q=rwkv&s=updated&type=Repositories). Demo limited to ctxlen {ctx_limit}.")
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(lines=2, label="Prompt", value="怎样写一个在火星上的吸血鬼的有趣故事?")
                token_count = gr.Slider(10, gen_limit_long, label="Max Tokens", step=10, value=gen_limit_long)
                temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
                top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.2)
                presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.3)
                count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.3)
            with gr.Column():
                with gr.Row():
                    submit = gr.Button("Submit", variant="primary")
                    clear = gr.Button("Clear", variant="secondary")
                output = gr.Textbox(label="Output", lines=30)
        data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples_chn, samples_per_page=50, label="Examples", headers=["Prompt", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
        submit.click(evaluate_chn, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
        clear.click(lambda: None, [], [output])
        data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])        

    if ENABLE_VISUAL:
        with gr.Tab("Visual RWKV-5 1.5B"):
            with gr.Row():
                with gr.Column():
                    image = gr.Image(type='pil', label="Image")
                with gr.Column():
                    prompt = gr.Textbox(lines=8, label="Prompt", 
                        value="Render a clear and concise summary of the photo.")
                    with gr.Row():
                        submit = gr.Button("Submit", variant="primary")
                        clear = gr.Button("Clear", variant="secondary") 
                with gr.Column():
                    output = gr.Textbox(label="Output", lines=10)
            data = gr.Dataset(components=[image, prompt], samples=visual_examples, label="Examples", headers=["Image", "Prompt"])
            submit.click(chatbot, [image, prompt], [output])
            clear.click(lambda: None, [], [output])
            data.click(lambda x: x, [data], [image, prompt])

demo.queue(concurrency_count=1, max_size=10)
demo.launch(share=False)