import spaces
import torch
from PIL import Image
from RealESRGAN import RealESRGAN
import gradio as gr
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model2 = RealESRGAN(device, scale=2)
model2.load_weights('weights/RealESRGAN_x2.pth', download=True)
model4 = RealESRGAN(device, scale=4)
model4.load_weights('weights/RealESRGAN_x4.pth', download=True)
model8 = RealESRGAN(device, scale=8)
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)
@spaces.GPU
def inference(image, size):
global model2
global model4
global model8
if image is None:
raise gr.Error("Image not uploaded")
width, height = image.size
if width >= 5000 or height >= 5000:
raise gr.Error("The image is too large.")
if torch.cuda.is_available():
torch.cuda.empty_cache()
if size == '2x':
try:
result = model2.predict(image.convert('RGB'))
except torch.cuda.OutOfMemoryError as e:
print(e)
model2 = RealESRGAN(device, scale=2)
model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
result = model2.predict(image.convert('RGB'))
elif size == '4x':
try:
result = model4.predict(image.convert('RGB'))
except torch.cuda.OutOfMemoryError as e:
print(e)
model4 = RealESRGAN(device, scale=4)
model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
result = model2.predict(image.convert('RGB'))
else:
try:
result = model8.predict(image.convert('RGB'))
except torch.cuda.OutOfMemoryError as e:
print(e)
model8 = RealESRGAN(device, scale=8)
model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
result = model2.predict(image.convert('RGB'))
print(f"Image size ({device}): {size} ... OK")
return result
title = "Face Real ESRGAN UpScale: 2x 4x 8x"
description = "This is an unofficial demo for Real-ESRGAN. Scales the resolution of a photo. This model shows better results on faces compared to the original version.
Telegram BOT: https://t.me/restoration_photo_bot"
article = "