Spaces:
Running
Running
""" | |
Common utilities. | |
""" | |
from asyncio import AbstractEventLoop | |
from io import BytesIO | |
import base64 | |
import json | |
import logging | |
import logging.handlers | |
import os | |
import platform | |
import sys | |
import time | |
from typing import AsyncGenerator, Generator | |
import warnings | |
import requests | |
from src.constants import LOGDIR | |
handler = None | |
visited_loggers = set() | |
def build_logger(logger_name, logger_filename): | |
global handler | |
formatter = logging.Formatter( | |
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s", | |
datefmt="%Y-%m-%d %H:%M:%S", | |
) | |
# Set the format of root handlers | |
if not logging.getLogger().handlers: | |
if sys.version_info[1] >= 9: | |
# This is for windows | |
logging.basicConfig(level=logging.INFO, encoding="utf-8") | |
else: | |
if platform.system() == "Windows": | |
warnings.warn( | |
"If you are running on Windows, " | |
"we recommend you use Python >= 3.9 for UTF-8 encoding." | |
) | |
logging.basicConfig(level=logging.INFO) | |
logging.getLogger().handlers[0].setFormatter(formatter) | |
# Redirect stdout and stderr to loggers | |
stdout_logger = logging.getLogger("stdout") | |
stdout_logger.setLevel(logging.INFO) | |
sl = StreamToLogger(stdout_logger, logging.INFO) | |
sys.stdout = sl | |
stderr_logger = logging.getLogger("stderr") | |
stderr_logger.setLevel(logging.ERROR) | |
sl = StreamToLogger(stderr_logger, logging.ERROR) | |
sys.stderr = sl | |
# Get logger | |
logger = logging.getLogger(logger_name) | |
logger.setLevel(logging.INFO) | |
# Avoid httpx flooding POST logs | |
logging.getLogger("httpx").setLevel(logging.WARNING) | |
# if LOGDIR is empty, then don't try output log to local file | |
if LOGDIR != "": | |
os.makedirs(LOGDIR, exist_ok=True) | |
filename = os.path.join(LOGDIR, logger_filename) | |
handler = logging.handlers.TimedRotatingFileHandler( | |
filename, when="D", utc=True, encoding="utf-8" | |
) | |
handler.setFormatter(formatter) | |
for l in [stdout_logger, stderr_logger, logger]: | |
if l in visited_loggers: | |
continue | |
visited_loggers.add(l) | |
l.addHandler(handler) | |
return logger | |
class StreamToLogger(object): | |
""" | |
Fake file-like stream object that redirects writes to a logger instance. | |
""" | |
def __init__(self, logger, log_level=logging.INFO): | |
self.terminal = sys.stdout | |
self.logger = logger | |
self.log_level = log_level | |
self.linebuf = "" | |
def __getattr__(self, attr): | |
return getattr(self.terminal, attr) | |
def write(self, buf): | |
temp_linebuf = self.linebuf + buf | |
self.linebuf = "" | |
for line in temp_linebuf.splitlines(True): | |
# From the io.TextIOWrapper docs: | |
# On output, if newline is None, any '\n' characters written | |
# are translated to the system default line separator. | |
# By default sys.stdout.write() expects '\n' newlines and then | |
# translates them so this is still cross platform. | |
if line[-1] == "\n": | |
encoded_message = line.encode("utf-8", "ignore").decode("utf-8") | |
self.logger.log(self.log_level, encoded_message.rstrip()) | |
else: | |
self.linebuf += line | |
def flush(self): | |
if self.linebuf != "": | |
encoded_message = self.linebuf.encode("utf-8", "ignore").decode("utf-8") | |
self.logger.log(self.log_level, encoded_message.rstrip()) | |
self.linebuf = "" | |
def disable_torch_init(): | |
""" | |
Disable the redundant torch default initialization to accelerate model creation. | |
""" | |
import torch | |
setattr(torch.nn.Linear, "reset_parameters", lambda self: None) | |
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) | |
def get_gpu_memory(max_gpus=None): | |
"""Get available memory for each GPU.""" | |
import torch | |
gpu_memory = [] | |
num_gpus = ( | |
torch.cuda.device_count() | |
if max_gpus is None | |
else min(max_gpus, torch.cuda.device_count()) | |
) | |
for gpu_id in range(num_gpus): | |
with torch.cuda.device(gpu_id): | |
device = torch.cuda.current_device() | |
gpu_properties = torch.cuda.get_device_properties(device) | |
total_memory = gpu_properties.total_memory / (1024**3) | |
allocated_memory = torch.cuda.memory_allocated() / (1024**3) | |
available_memory = total_memory - allocated_memory | |
gpu_memory.append(available_memory) | |
return gpu_memory | |
def oai_moderation(text, custom_thresholds=None): | |
""" | |
Check whether the text violates OpenAI moderation API. | |
""" | |
import openai | |
client = openai.OpenAI(api_key=os.environ["OPENAI_API_KEY"]) | |
# default to true to be conservative | |
flagged = True | |
MAX_RETRY = 3 | |
for _ in range(MAX_RETRY): | |
try: | |
res = client.moderations.create(input=text) | |
flagged = res.results[0].flagged | |
if custom_thresholds is not None: | |
for category, threshold in custom_thresholds.items(): | |
if getattr(res.results[0].category_scores, category) > threshold: | |
flagged = True | |
break | |
except (openai.OpenAIError, KeyError, IndexError) as e: | |
print(f"MODERATION ERROR: {e}\nInput: {text}") | |
return flagged | |
def moderation_filter(text, model_list, do_moderation=False): | |
# Apply moderation for below models | |
MODEL_KEYWORDS = ["claude", "gpt", "bard", "mistral-large", "command-r", "dbrx"] | |
custom_thresholds = {"sexual": 0.3} | |
# set a stricter threshold for claude | |
for model in model_list: | |
if "claude" in model: | |
custom_thresholds = {"sexual": 0.2} | |
for keyword in MODEL_KEYWORDS: | |
for model in model_list: | |
if keyword in model: | |
do_moderation = True | |
break | |
if do_moderation: | |
return oai_moderation(text, custom_thresholds) | |
return False | |
def clean_flant5_ckpt(ckpt_path): | |
""" | |
Flan-t5 trained with HF+FSDP saves corrupted weights for shared embeddings, | |
Use this function to make sure it can be correctly loaded. | |
""" | |
import torch | |
index_file = os.path.join(ckpt_path, "pytorch_model.bin.index.json") | |
index_json = json.load(open(index_file, "r")) | |
weightmap = index_json["weight_map"] | |
share_weight_file = weightmap["shared.weight"] | |
share_weight = torch.load(os.path.join(ckpt_path, share_weight_file))[ | |
"shared.weight" | |
] | |
for weight_name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]: | |
weight_file = weightmap[weight_name] | |
weight = torch.load(os.path.join(ckpt_path, weight_file)) | |
weight[weight_name] = share_weight | |
torch.save(weight, os.path.join(ckpt_path, weight_file)) | |
def pretty_print_semaphore(semaphore): | |
"""Print a semaphore in better format.""" | |
if semaphore is None: | |
return "None" | |
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})" | |
"""A javascript function to get url parameters for the gradio web server.""" | |
get_window_url_params_js = """ | |
function() { | |
const params = new URLSearchParams(window.location.search); | |
url_params = Object.fromEntries(params); | |
console.log("url_params", url_params); | |
return url_params; | |
} | |
""" | |
get_window_url_params_with_tos_js = """ | |
function() { | |
const params = new URLSearchParams(window.location.search); | |
url_params = Object.fromEntries(params); | |
console.log("url_params", url_params); | |
msg = "Users of this website are required to agree to the following terms:\\n\\nThe service is a research preview. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.\\nPlease do not upload any private information.\\nThe service collects user dialogue data, including both text and images, and reserves the right to distribute it under a Creative Commons Attribution (CC-BY) or a similar license." | |
alert(msg); | |
return url_params; | |
} | |
""" | |
def iter_over_async( | |
async_gen: AsyncGenerator, event_loop: AbstractEventLoop | |
) -> Generator: | |
""" | |
Convert async generator to sync generator | |
:param async_gen: the AsyncGenerator to convert | |
:param event_loop: the event loop to run on | |
:returns: Sync generator | |
""" | |
ait = async_gen.__aiter__() | |
async def get_next(): | |
try: | |
obj = await ait.__anext__() | |
return False, obj | |
except StopAsyncIteration: | |
return True, None | |
while True: | |
done, obj = event_loop.run_until_complete(get_next()) | |
if done: | |
break | |
yield obj | |
def detect_language(text: str) -> str: | |
"""Detect the langauge of a string.""" | |
import polyglot # pip3 install polyglot pyicu pycld2 | |
from polyglot.detect import Detector | |
from polyglot.detect.base import logger as polyglot_logger | |
import pycld2 | |
polyglot_logger.setLevel("ERROR") | |
try: | |
lang_code = Detector(text).language.name | |
except (pycld2.error, polyglot.detect.base.UnknownLanguage): | |
lang_code = "unknown" | |
return lang_code | |
def parse_gradio_auth_creds(filename: str): | |
"""Parse a username:password file for gradio authorization.""" | |
gradio_auth_creds = [] | |
with open(filename, "r", encoding="utf8") as file: | |
for line in file.readlines(): | |
gradio_auth_creds += [x.strip() for x in line.split(",") if x.strip()] | |
if gradio_auth_creds: | |
auth = [tuple(cred.split(":")) for cred in gradio_auth_creds] | |
else: | |
auth = None | |
return auth | |
def is_partial_stop(output: str, stop_str: str): | |
"""Check whether the output contains a partial stop str.""" | |
for i in range(0, min(len(output), len(stop_str))): | |
if stop_str.startswith(output[-i:]): | |
return True | |
return False | |
def run_cmd(cmd: str): | |
"""Run a bash command.""" | |
print(cmd) | |
return os.system(cmd) | |
def is_sentence_complete(output: str): | |
"""Check whether the output is a complete sentence.""" | |
end_symbols = (".", "?", "!", "...", "。", "?", "!", "…", '"', "'", "”") | |
return output.endswith(end_symbols) | |
# Models don't use the same configuration key for determining the maximum | |
# sequence length. Store them here so we can sanely check them. | |
# NOTE: The ordering here is important. Some models have two of these and we | |
# have a preference for which value gets used. | |
SEQUENCE_LENGTH_KEYS = [ | |
"max_position_embeddings", | |
"max_sequence_length", | |
"seq_length", | |
"max_seq_len", | |
"model_max_length", | |
] | |
def get_context_length(config): | |
"""Get the context length of a model from a huggingface model config.""" | |
rope_scaling = getattr(config, "rope_scaling", None) | |
if rope_scaling: | |
rope_scaling_factor = config.rope_scaling["factor"] | |
else: | |
rope_scaling_factor = 1 | |
for key in SEQUENCE_LENGTH_KEYS: | |
val = getattr(config, key, None) | |
if val is not None: | |
return int(rope_scaling_factor * val) | |
return 2048 | |
def str_to_torch_dtype(dtype: str): | |
import torch | |
if dtype is None: | |
return None | |
elif dtype == "float32": | |
return torch.float32 | |
elif dtype == "float16": | |
return torch.float16 | |
elif dtype == "bfloat16": | |
return torch.bfloat16 | |
else: | |
raise ValueError(f"Unrecognized dtype: {dtype}") | |
def load_image(image_file): | |
from PIL import Image | |
import requests | |
image = None | |
if image_file.startswith("http://") or image_file.startswith("https://"): | |
timeout = int(os.getenv("REQUEST_TIMEOUT", "3")) | |
response = requests.get(image_file, timeout=timeout) | |
image = Image.open(BytesIO(response.content)) | |
elif image_file.lower().endswith(("png", "jpg", "jpeg", "webp", "gif")): | |
image = Image.open(image_file) | |
elif image_file.startswith("data:"): | |
image_file = image_file.split(",")[1] | |
image = Image.open(BytesIO(base64.b64decode(image_file))) | |
else: | |
image = Image.open(BytesIO(base64.b64decode(image_file))) | |
return image | |
def upload_image_file_to_gcs(image, filename): | |
from google.cloud import storage | |
import io | |
storage_client = storage.Client() | |
# upload file to GCS | |
bucket = storage_client.get_bucket("arena_user_content") | |
blob = bucket.blob(f"{filename}") | |
if not blob.exists(): | |
buffer = io.BytesIO() | |
image.save(buffer, format="PNG") | |
buffer.seek(0) | |
blob.upload_from_file(buffer, content_type="image/png") | |
return blob.public_url | |
def get_image_file_from_gcs(filename): | |
from google.cloud import storage | |
storage_client = storage.Client() | |
bucket = storage_client.get_bucket("arena_user_content") | |
blob = bucket.blob(f"{filename}") | |
contents = blob.download_as_bytes() | |
return contents | |
def resize_image_and_return_image_in_bytes(image, max_image_size_mb): | |
from PIL import Image | |
import math | |
image_bytes = BytesIO() | |
if not max_image_size_mb is None: | |
image.save(image_bytes, format="PNG") | |
target_size_bytes = max_image_size_mb * 1024 * 1024 | |
current_size_bytes = image_bytes.tell() | |
if current_size_bytes > target_size_bytes: | |
resize_factor = (target_size_bytes / current_size_bytes) ** 0.5 | |
new_width = math.floor(image.width * resize_factor) | |
new_height = math.floor(image.height * resize_factor) | |
resized_image = image.resize((new_width, new_height)) | |
image_bytes = BytesIO() | |
resized_image.save(image_bytes, format="PNG") | |
image_bytes.seek(0) | |
else: | |
image.save(image_bytes, format="PNG") | |
return image_bytes | |
def convert_image_to_byte_array(image, max_image_size_mb): | |
from PIL import Image | |
if type(image) == str: | |
pil_image = Image.open(image).convert("RGB") | |
image_bytes = resize_image_and_return_image_in_bytes( | |
pil_image, max_image_size_mb | |
) | |
else: | |
image_bytes = resize_image_and_return_image_in_bytes(image, max_image_size_mb) | |
image_byte_array = image_bytes.getvalue() | |
return image_byte_array | |
def image_moderation_request(image_bytes, endpoint, api_key): | |
headers = {"Content-Type": "image/jpeg", "Ocp-Apim-Subscription-Key": api_key} | |
MAX_RETRIES = 3 | |
for _ in range(MAX_RETRIES): | |
response = requests.post(endpoint, headers=headers, data=image_bytes).json() | |
try: | |
if response["Status"]["Code"] == 3000: | |
break | |
except: | |
time.sleep(0.5) | |
return response | |
def image_moderation_provider(image, api_type): | |
if api_type == "nsfw": | |
endpoint = os.environ["AZURE_IMG_MODERATION_ENDPOINT"] | |
api_key = os.environ["AZURE_IMG_MODERATION_API_KEY"] | |
response = image_moderation_request(image, endpoint, api_key) | |
return response["IsImageAdultClassified"] | |
elif api_type == "csam": | |
endpoint = ( | |
"https://api.microsoftmoderator.com/photodna/v1.0/Match?enhance=false" | |
) | |
api_key = os.environ["PHOTODNA_API_KEY"] | |
response = image_moderation_request(image, endpoint, api_key) | |
return response["IsMatch"] | |
def image_moderation_filter(image): | |
print(f"moderating image: {image}") | |
MAX_NSFW_ENDPOINT_IMAGE_SIZE_IN_MB = 4 | |
image_bytes = convert_image_to_byte_array(image, MAX_NSFW_ENDPOINT_IMAGE_SIZE_IN_MB) | |
nsfw_flagged = image_moderation_provider(image_bytes, "nsfw") | |
csam_flagged = False | |
if nsfw_flagged: | |
csam_flagged = image_moderation_provider(image_bytes, "csam") | |
return nsfw_flagged, csam_flagged | |