# Dockerfile customized for deployment on HuggingFace Spaces platform # -- The Dockerfile has been tailored specifically for use on HuggingFace. # -- It implies that certain modifications or optimizations have been made with HuggingFace's environment in mind. # -- It uses "HuggingFace Spaces" to be more specific about the target platform. # FROM pytorch/pytorch:2.2.1-cuda12.1-cudnn8-devel FROM pytorch/pytorch:2.4.0-cuda12.1-cudnn9-devel # FOR HF USER root ENV DEBIAN_FRONTEND=noninteractive RUN apt-get update && apt-get install -y \ git \ cmake \ python3 \ python3-pip \ python3-venv \ python3-dev \ python3-numpy \ gcc \ build-essential \ gfortran \ wget \ curl \ pkg-config \ software-properties-common \ zip \ && apt-get clean && rm -rf /tmp/* /var/tmp/* RUN apt-get update && DEBIAN_FRONTEND=noninteractive \ apt-get install -y python3.10 python3-pip RUN apt-get install -y libopenblas-base libopenmpi-dev ENV TZ=Asia/Dubai RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone RUN useradd -m -u 1000 user RUN apt-get update && apt-get install -y sudo && \ echo 'user ALL=(ALL) NOPASSWD:ALL' >> /etc/sudoers USER user ENV HOME=/home/user \ PATH=/home/user/.local/bin:$PATH RUN mkdir $HOME/app RUN mkdir $HOME/app/test_images # WORKDIR $HOME/app RUN chown -R user:user $HOME/app USER user WORKDIR $HOME/app RUN python -m pip install qwen-vl-utils RUN python -m pip install --pre -U -f https://mlc.ai/wheels mlc-llm-nightly-cu122 mlc-ai-nightly-cu122 RUN python3 -m pip install chromadb db-sqlite3 auto-gptq exllama sqlalchemy WORKDIR $HOME/app RUN git clone https://github.com/casper-hansen/AutoAWQ WORKDIR $HOME/app/AutoAWQ/ RUN python3 -m pip install -e . WORKDIR $HOME/app # ENV FLASH_ATTENTION_FORCE_BUILD=TRUE RUN python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 RUN python -m pip install accelerate diffusers datasets timm flash-attn==2.6.1 gradio RUN python3 -m pip install --no-deps optimum RUN python3 -m pip install --no-deps autoawq>=0.1.8 #This seems to be a must : Intel Extension for PyTorch 2.4 needs to work with PyTorch 2.4.*, but PyTorch 2.2.2 is RUN python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 RUN python3 -m pip install -U accelerate RUN python3 -m pip install -U git+https://github.com/huggingface/transformers WORKDIR $HOME/app COPY --chown=user:user app.py . COPY --chown=user:user test_images /home/user/app/test_images # /home/user/app/ # chown -R user:user /home/user/.cache/ ENV PYTHONUNBUFFERED=1 GRADIO_ALLOW_FLAGGING=never GRADIO_NUM_PORTS=1 GRADIO_SERVER_NAME=0.0.0.0 GRADIO_SERVER_PORT=7860 SYSTEM=spaces RUN python3 -m pip install pennylane sympy pennylane-qiskit duckdb WORKDIR $HOME/app EXPOSE 8097 7842 8501 8000 6666 7860 CMD ["python", "app.py"] # ERROR! IntelĀ® Extension for PyTorch* needs to work with PyTorch 2.4.*, but PyTorch 2.2.2 is found. Please switch to the matching version and run again. # ERROR! IntelĀ® Extension for PyTorch* needs to work with PyTorch 2.4.*, but PyTorch 2.2.2 is found. Please switch to the matching version and run again. # `Qwen2VLRotaryEmbedding` can now be fully parameterized by passing the model config through the `config` argument. All other arguments will be removed in v4.46 # /home/user/.local/lib/python3.10/site-packages/transformers/modeling_utils.py:4749: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead # warnings.warn( # /home/user/.local/lib/python3.10/site-packages/accelerate/utils/imports.py:336: UserWarning: Intel Extension for PyTorch 2.4 needs to work with PyTorch 2.4.*, but PyTorch 2.2.2 is found. Please switch to the matching version and run again. # warnings.warn( # Error loading model Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4: Found modules on cpu/disk. # Using Exllama or Exllamav2 backend requires all the modules to be on GPU.You can deactivate exllama backend by setting `disable_exllama=True` in the quantization config object # Error loading model Qwen/Qwen2-VL-7B-Instruct: (ReadTimeoutError("HTTPSConnectionPool(host='hf.co', port=443): # Read timed out. (read timeout=10)"), '(Request ID: b8269a88-9b6b-43e0-942d-1049f173dc00)') # Error loading model Qwen/Qwen2-VL-7B-Instruct: CUDA out of memory. # Tried to allocate 130.00 MiB. GPU 0 has a total capacity of 14.58 GiB of which 77.62 MiB is free. # instruct: FlashAttention only supports Ampere GPUs or newer.