import re import seaborn as sns import streamlit as st from demo.utils import load_model, process_text st.set_page_config( page_title="BERT Keyword Extractor", page_icon="🎈", ) def _max_width_(): max_width_str = "max-width: 1400px;" st.markdown( f""" """, unsafe_allow_html=True, ) st.header("🔑 Automated Essay Evaluator") with st.expander("ℹī¸ - About this app", expanded=True): st.write( """ - This application demonstrates how automated essay evaluation works: given as an input text with max. \ length of 512, it scores it (from 1.0 to 4.0) for different criteria: cohesion, syntax, vocabulary, \ phraseology, grammar and conventions. - This solution is based on fine-tuned deberta-v3-large model. """ ) st.markdown("") st.markdown("") st.markdown("## 📌 **Paste document**", unsafe_allow_html=True) with st.form(key="my_form"): _, c2, _ = st.columns([0.07, 5, 0.07]) with c2: doc = st.text_area( "Paste your text below (max 500 words)", height=510, ) MAX_WORDS = 500 res = len(re.findall(r"\w+", doc)) doc = doc[:MAX_WORDS] submit_button = st.form_submit_button(label="✨ Assess my text!") if not submit_button: st.stop() st.markdown("## 🎈 **Check results**") st.header("") cs, c1, c2, c3, cLast = st.columns([2, 1.5, 1.5, 1.5, 2]) st.header("") model = load_model() df = process_text(doc, model) df.index += 1 # Add styling cmGreen = sns.light_palette("green", as_cmap=True) cmRed = sns.light_palette("red", as_cmap=True) df = df.style.background_gradient( cmap=cmGreen, subset=[ "Grade", ], ) format_dictionary = { "Relevancy": "{:.1%}", } df = df.format(format_dictionary) st.table(df)