Spaces:
Running
Running
File size: 1,691 Bytes
3231b63 7727a49 3231b63 112a098 3231b63 1ab47cd 3231b63 5dac924 3231b63 a43d6a8 3231b63 b2e7453 3231b63 b2e7453 7727a49 61f43a3 3231b63 0d3f186 7727a49 3231b63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
from Source.Predict import predict
from flask import Flask, render_template, jsonify, request
import requests
import pickle as pkl
import pandas as pd
import numpy as np
pd.set_option('display.max_columns', None)
pd.set_option('display.expand_frame_repr', False)
import os
import json
# get week, season
week, season = predict.get_week()
app = Flask(__name__, template_folder="Templates", static_folder="Static", static_url_path="/Static")
app.secret_key = 'green-flounder'
games = predict.get_games()[['Date','Away Team','Home Team']]
@app.route('/')
def index():
return render_template('index.html')
@app.route('/get_games')
def get_games():
return jsonify(games.to_dict(orient='records'))
@app.route('/submit_games', methods=['POST'])
def submit_games():
data = request.json
data = pd.DataFrame(data).replace('', np.nan).dropna()
print(data)
home_teams = data['HomeTeam'].values
away_teams = data['AwayTeam'].values
ou_lines = data['OverUnderLine'].values
row_indices = data['rowIndex'].values
moneylines = []
over_unders = []
for row_index,home,away,total in zip(row_indices,home_teams,away_teams,ou_lines):
game_id, moneyline, over_under = predict.predict(home,away,season,week,total)
moneyline['rowIndex'] = int(row_index)
over_under['rowIndex'] = int(row_index)
moneylines.append(moneyline)
over_unders.append(over_under)
print('MoneyLines')
print(moneylines)
print('OverUnders')
print(over_unders)
return jsonify({'moneylines': moneylines,
'over_unders': over_unders})
if __name__ == '__main__':
app.run(host='0.0.0.0', port='7860') |