Spaces:
Running
Running
from datetime import datetime | |
import numpy as np | |
import pandas as pd | |
pd.set_option('chained_assignment',None) | |
pd.set_option('display.max_columns',None) | |
import os | |
import pickle as pkl | |
from Source.Predict.predict import predict | |
# get team abbreviations | |
with open('Source/Pickles/team_abbreviation_to_name.pkl', 'rb') as f: | |
team_abbreviation_to_name = pkl.load(f) | |
# get this year's odds and results | |
gbg_and_odds_this_year = pd.read_csv('Source/Data/gbg_and_odds_this_year.csv') | |
results = pd.read_csv('Source/Data/results.csv') | |
# make predictions | |
from tqdm import tqdm | |
print("Predicting games and getting record") | |
predictions = {} | |
for game_id,home,away,season,week,total in tqdm(gbg_and_odds_this_year[['game_id','home_team','away_team','Season','GP','Total Score Close']].values): | |
if week!=1: | |
predictions[game_id] = predict(home,away,season,week,total) | |
# get record and save it | |
predictions_df = pd.DataFrame(predictions).T | |
predictions_df['predicted_winner'] = [i['Winner'][0] if type(i['Winner'])==list else None for i in predictions_df[1]] | |
predictions_df['predicted_winner'] = predictions_df['predicted_winner'].map(team_abbreviation_to_name) | |
predictions_df['predicted_over_under'] = [i['Over/Under'][0] if type(i['Over/Under'])==list else None for i in predictions_df[2]] | |
predictions_df = predictions_df.merge(results, left_index=True, right_on='game_id').merge(gbg_and_odds_this_year[['game_id','Total Score Close','home_team','away_team','game_date']]).dropna(subset=['predicted_winner']) | |
predictions_df['over_under'] = ['Over' if t>tsc else 'Under' if t<tsc else 'Push' for t,tsc in predictions_df[['total','Total Score Close']].values] | |
predictions_df['game_date'] = pd.to_datetime(predictions_df['game_date']) | |
predictions_df['winner_correct'] = (predictions_df['predicted_winner']==predictions_df['winner']).astype(int) | |
predictions_df['winner_incorrect'] = (predictions_df['predicted_winner']!=predictions_df['winner']).astype(int) | |
predictions_df['over_under_correct'] = (predictions_df['predicted_over_under']==predictions_df['over_under']).astype(int) | |
predictions_df['over_under_incorrect'] = (predictions_df['predicted_over_under']!=predictions_df['over_under']).astype(int) | |
winners_correct = predictions_df['winner_correct'].sum() | |
winners_incorrect = predictions_df['winner_incorrect'].sum() | |
over_unders_correct = predictions_df['over_under_correct'].sum() | |
over_unders_incorrect = predictions_df['over_under_incorrect'].sum() | |
max_date = predictions_df['game_date'].max() | |
date_obj = datetime.strptime(max_date, "%m/%d/%Y") | |
latest_game = date_obj.strftime("%A, %m/%d") | |
record = {"winners_correct":str(winners_correct), | |
"winners_incorrect":str(winners_incorrect), | |
"over_unders_correct":str(over_unders_correct), | |
"over_unders_incorrect":str(over_unders_incorrect), | |
"latest_game":latest_game} | |
import json | |
with open('Source/Data/record.json', 'w') as f: | |
json.dump(record,f) | |